Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32667796

RESUMO

The kinetics of the gas phase reactions of the Criegee intermediate CH2OO with O3 and IO have been studied at 296 K and 300 Torr through simultaneous measurements of CH2OO, the CH2OO precursor (CH2I2), O3, and IO using flash photolysis of CH2I2/O2/O3/N2 mixtures at 248 nm coupled to time-resolved broadband UV absorption spectroscopy. Experiments were performed under pseudo-first-order conditions with respect to O3, with the rate coefficients for reactions of CH2OO with O3 and IO obtained by fitting to the observed decays of CH2OO using a model constrained to the measured concentrations of IO. Fits were performed globally, with the ratio between the initial concentration of O3 and the average concentration of IO varying in the range 30-700, and gave kCH2OO+O3 = (3.6 ± 0.8) × 10-13 cm3 molecule-1 s-1 and kCH2OO+IO = (7.6 ± 1.4) × 10-11 cm3 molecule-1 s-1 (where the errors are at the 2σ level). The magnitude of kCH2OO+O3 has a significant effect on the steady state concentration of CH2OO in chamber studies. Atmospheric implications of the results are discussed.

2.
Acc Chem Res ; 51(11): 2620-2627, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30358991

RESUMO

A generally accepted principle of chemical kinetics is that a reaction will be very slow at low temperatures if there is an activation barrier on the potential energy surface to form products. However, this Account shows that the reverse is true for gas-phase hydrogen abstraction reactions of the hydroxyl radical, OH, with organic molecules with which it can form a weakly bound (5-30 kJ mol-1) hydrogen-bonded complex. For hydrogen atom abstraction reactions of OH with volatile organic compounds (VOCs) containing alcohol, ether, carbonyl, and ester functional groups, the reaction accelerates rapidly at very low temperatures, with rate coefficients, k, that can be up to a 1000 times faster than those at room temperature, despite the barrier to products. The OH radical is a crucial intermediate in Earth's atmosphere, combustion processes, and the chemistry of the interstellar medium, where temperatures can reach as low as 10 K, so this behavior has very important implications for gas-phase chemistry in space. The key point is that at low temperatures the lifetime of the OH-VOC complex against re-dissociation back to reactants becomes much longer, and hence the probability of quantum mechanical tunneling under the reaction barrier to form products becomes much higher. These observations were made possible by using Laval nozzles to generate uniform supersonic flows at extremely low temperatures so that condensation of the reagents at reactor walls is avoided. In this Account, the use of laser flash-photolysis combined with laser-induced fluorescence spectroscopy within Laval flows is described to study the unusual kinetics of this type of reaction at temperatures down to 21 K and demonstrate the rapid upturn in the rate coefficient. For the reaction of OH with CH3OH, further evidence for the precomplex and tunneling mechanism comes from observation of the CH3O reaction product at very low temperatures, despite it being formed over the higher barrier to reaction. The experimental observations are supported by theoretical calculations using the MESMER master equation package to calculate k( T) and product yields as a function of temperature and which make use of potential energy surfaces determined using ab initio methods. The CH3O product is formed over a narrower barrier with a larger imaginary frequency and is calculated to be the sole product at very low temperatures. The kinetics of the OH reaction with CH3OH were measured to be independent of pressure, consistent with a tunneling mechanism rather than any collisional stabilization of the prereactive complex. In this Account, we collate available kinetic data and show that this newly discovered mechanism for H atom transfer reactions appears to be generally applicable for reactions of OH with organic molecules containing oxygenated functional groups, which have been observed in space by radio-astronomy. Rather than being ignored for a range of interstellar environments, these OH reactions are now being included in chemical networks in space and have been shown to significantly influence the abundance of OH, the organic molecules themselves, and reaction products and provide novel routes to forming even more complex functional groups, for example, precursors to prebiotic molecules.

3.
Nat Commun ; 9(1): 2584, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968712

RESUMO

Organic acids play a key role in the troposphere, contributing to atmospheric aqueous-phase chemistry, aerosol formation, and precipitation acidity. Atmospheric models currently account for less than half the observed, globally averaged formic acid loading. Here we report that acetaldehyde photo-tautomerizes to vinyl alcohol under atmospherically relevant pressures of nitrogen, in the actinic wavelength range, λ = 300-330 nm, with measured quantum yields of 2-25%. Recent theoretical kinetics studies show hydroxyl-initiated oxidation of vinyl alcohol produces formic acid. Adding these pathways to an atmospheric chemistry box model (Master Chemical Mechanism) demonstrates increased formic acid concentrations by a factor of ~1.7 in the polluted troposphere and a factor of ~3 under pristine conditions. Incorporating this mechanism into the GEOS-Chem 3D global chemical transport model reveals an estimated 7% contribution to worldwide formic acid production, with up to 60% of the total modeled formic acid production over oceans arising from photo-tautomerization.

4.
Rev Sci Instrum ; 89(2): 024101, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29495797

RESUMO

A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ∼10-800 Torr and can measure time-resolved absorbances <10-4 in the UV (300 nm) and even lower in the visible (580 nm) 2.3 × 10-5, with the peak of sensitivity at ∼500 nm. The novelty of this setup lies in the arrangement of the multipass optics. Although appearing similar to other multipass optical systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ∼200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.

9.
Environ Sci Technol ; 51(13): 7442-7449, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28581733

RESUMO

Photochemical cycling of nitrogen oxides (NOx) produces tropospheric ozone (O3), and NOx is traditionally considered to be directly emitted. The inability of current global models to accurately calculate NOx levels, and concurrently, difficulties in performing direct NOx measurements in low-NOx regimes (several pptv or several tens of pptv) globally introduce a large uncertainty in the modeling of O3 formation. Here, we use the near-explicit Master Chemical Mechanism (MCM v3.2) within a 0D box-model framework, to describe the chemistry of NOx and O3 in the remote marine boundary layer at Cape Verde. We explore the impact of a recently discovered NOx recycling route, namely photolysis of particulate nitrate, on the modeling of NOx abundance and O3 formation. The model is constrained to observations of long-lived species, meteorological parameters, and photolysis frequencies. Only a model with this novel NOx recycling route reproduces levels of gaseous nitrous acid, NO, and NO2 within the model and measurement uncertainty. O3 formation from NO oxidation is several times more efficient than previously considered. This study highlights the need for the inclusion of particulate nitrate photolysis in future models for O3 and for the photolysis rate of particulate nitrate to be quantified under variable atmospheric conditions.


Assuntos
Poluentes Atmosféricos , Óxidos de Nitrogênio , Ozônio , Cabo Verde , Nitratos , Ácido Nitroso
10.
J Phys Chem A ; 121(17): 3184-3191, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28365987

RESUMO

The kinetics of the reaction OH/OD + SO2 were studied using a laser flash photolysis/laser-induced fluorescence technique. Evidence for two-photon photolysis of SO2 at 248 nm is presented and quantified, and which appears to have been evident to some extent in most previous photolysis studies, potentially leading to values for the rate coefficient k1 that are too large. The kinetics of the reaction OH(v = 0) + SO2 (T = 295 K, p = 25-300 torr) were measured under conditions where SO2 photolysis was taken into account. These results, together with literature data, were modeled using a master equation analysis. This analysis highlighted problems with the literature data: the rate coefficients derived from flash photolysis data were generally too high and from the flow tube data too low. Our best estimate of the high-pressure limiting rate coefficient k1∞ was obtained from selected data and gives a value of (7.8 ± 2.2) × 10-13 cm3 molecule-1 s-1, which is lower than that recommended in the literature. A parametrized form of k1([N2],T) is provided. The OD(v = 0) + SO2 (T = 295 K, p = 25-300 torr) data are reported for the first time, and master equation analysis reinforces our assignment of k1∞.

11.
J Phys Chem A ; 121(17): 3175-3183, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28363245

RESUMO

The kinetics of the reaction OH/OD(v = 1,2,3) + SO2 were studied using a photolysis/laser-induced fluorescence technique. The rate coefficients OH/OD(v = 1,2,3) + SO2, k1, over the temperature range of 295-810 K were used to determine the limiting high-pressure limit k1∞. This method is usually applicable if the reaction samples the potential well of the adduct HOSO2 and if intramolecular vibrational relaxation is fast. In the present case, however, the rate coefficients showed an additional fast removal contribution as evidenced by the increase in k1 with vibrational level; this behavior together with its temperature dependence is consistent with the existence of a weakly bound complex on the potential energy surface prior to adduct formation. The data were analyzed using a composite mechanism that incoporates energy-transfer mechanisms via both the adduct and the complex, and yielded a value of k1∞(295 K) equal to (7.2 ± 3.3) × 10-13 cm3 molecule-1 s-1 (errors at 1σ), a factor of between 2 and 3 smaller than the current recommended IUPAC and JPL values of (2.0-1.0+2.0) and (1.6 ± 0.4) × 10-12 cm3 molecule-1 s-1 at 298 K, respectively, although the error bars do overlap. k1∞ was observed to only depend weakly on temperature. Further evidence for a smaller k1∞ is presented in the companion paper.

12.
Environ Sci Technol ; 51(5): 2519-2528, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169528

RESUMO

Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.


Assuntos
Mudança Climática , Ozônio/química , Poluição do Ar , Atmosfera/química , Ecossistema , Humanos
13.
Environ Sci Technol ; 51(4): 2170-2177, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28121426

RESUMO

The reaction between CH3O2 and OH radicals has been shown to be fast and to play an appreciable role for the removal of CH3O2 radials in remote environments such as the marine boundary layer. Two different experimental techniques have been used here to determine the products of this reaction. The HO2 yield has been obtained from simultaneous time-resolved measurements of the absolute concentration of CH3O2, OH, and HO2 radicals by cw-CRDS. The possible formation of a Criegee intermediate has been measured by broadband cavity enhanced UV absorption. A yield of ϕHO2 = (0.8 ± 0.2) and an upper limit for ϕCriegee = 0.05 has been determined for this reaction, suggesting a minor yield of methanol or stabilized trioxide as a product. The impact of this reaction on the composition of the remote marine boundary layer has been determined by implementing these findings into a box model utilizing the Master Chemical Mechanism v3.2, and constraining the model for conditions found at the Cape Verde Atmospheric Observatory in the remote tropical Atlantic Ocean. Inclusion of the CH3O2+OH reaction into the model results in up to 30% decrease in the CH3O2 radical concentration while the HO2 concentration increased by up to 20%. Production and destruction of O3 are also influenced by these changes, and the model indicates that taking into account the reaction between CH3O2 and OH leads to a 6% decrease of O3.


Assuntos
Atmosfera/química , Radical Hidroxila/química , Oceano Atlântico , Metanol , Modelos Teóricos
14.
Phys Chem Chem Phys ; 19(3): 2332-2345, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28054688

RESUMO

In environments with high concentrations of biogenic volatile organic compounds and low concentrations of nitrogen oxides (NOx = NO + NO2), significant discrepancies have been found between measured and modeled concentrations of hydroxyl radical (OH). The photolysis of peroxy radicals from isoprene (HO-Iso-O2) in the near ultraviolet represents a potential source of OH in these environments, yet has not been considered in atmospheric models. This paper presents measurements of the absorption cross-sections for OH formation (σRO2,OH) from the photolysis of HO-Iso-O2 at wavelengths from 310-362.5 nm, via direct observation by laser-induced fluorescence of the additional OH produced following laser photolysis of HO-Iso-O2. Values of σRO2,OH for HO-Iso-O2 ranged from (6.0 ± 1.6) × 10-20 cm2 molecule-1 at 310 nm to (0.50 ± 0.15) × 10-20 cm2 molecule-1 at 362.5 nm. OH photodissociation yields from HO-Iso-O2 photolysis, ϕOH,RO2, were determined via comparison of the measured values of σRO2,OH to the total absorption cross-sections for HO-Iso-O2 (σRO2), which were obtained using a newly-constructed spectrometer. ϕOH,RO2 was determined to be 0.13 ± 0.04 at wavelengths from 310-362.5 nm. To determine the impact of HO-Iso-O2 photolysis on atmospheric OH concentrations, a modeling case-study for a high-isoprene, low-NOx environment (namely, the 2008 Oxidant and Particle Photochemical Processes above a South-East Asian Tropical Rainforest (OP-3) field campaign, conducted in Borneo) was undertaken using the detailed Master Chemical Mechanism. The model calculated that the inclusion of HO-Iso-O2 photolysis in the model had increased the OH concentration by only 1% on average from 10:00-16:00 local time. Thus, HO-Iso-O2 photolysis alone is insufficient to resolve the discrepancy seen between measured OH concentrations and those predicted by atmospheric chemistry models in such environments.

15.
Phys Chem Chem Phys ; 18(38): 26423-26433, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27711478

RESUMO

Using laser flash photolysis coupled to photo-ionization time-of-flight mass spectrometry (PIMS), methyl radicals (CH3) have been detected as primary products from the reaction of OH radicals with acetaldehyde (ethanal, CH3CHO) with a yield of ∼15% at 1-2 Torr of helium bath gas. Supporting measurements based on laser induced fluorescence studies of OH recycling in the OH/CH3CHO/O2 system are consistent with the PIMS study. Master equation calculations suggest that the origin of the methyl radicals is from prompt dissociation of chemically activated acetyl products and hence is consistent with previous studies which have shown that abstraction, rather than addition/elimination, is the sole route for the OH + acetaldehyde reaction. However, the observation of a significant methyl product yield suggests that energy partitioning in the reaction is different from the typical early barrier mechanism where reaction exothermicity is channeled preferentially into the newly formed bond. The master equation calculations predict atmospheric yields of methyl radicals of ∼9%. The implications of the observations in atmospheric and combustion chemistry are briefly discussed.

20.
Faraday Discuss ; 189: 589-616, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27121106

RESUMO

Air pollution is the environmental factor with the greatest impact on human health in Europe. Understanding the key processes driving air quality across the relevant spatial scales, especially during pollution exceedances and episodes, is essential to provide effective predictions for both policymakers and the public. It is particularly important for policy regulators to understand the drivers of local air quality that can be regulated by national policies versus the contribution from regional pollution transported from mainland Europe or elsewhere. One of the main objectives of the Coupled Urban and Regional processes: Effects on AIR quality (CUREAIR) project is to determine local and regional contributions to ozone events. A detailed zero-dimensional (0-D) box model run with the Master Chemical Mechanism (MCMv3.2) is used as the benchmark model against which the less explicit chemistry mechanisms of the Generic Reaction Set (GRS) and the Common Representative Intermediates (CRIv2-R5) schemes are evaluated. GRS and CRI are used by the Atmospheric Dispersion Modelling System (ADMS-Urban) and the regional chemistry transport model EMEP4UK, respectively. The MCM model uses a near-explicit chemical scheme for the oxidation of volatile organic compounds (VOCs) and is constrained to observations of VOCs, NOx, CO, HONO (nitrous acid), photolysis frequencies and meteorological parameters measured during the ClearfLo (Clean Air for London) campaign. The sensitivity of the less explicit chemistry schemes to different model inputs has been investigated: Constraining GRS to the total VOC observed during ClearfLo as opposed to VOC derived from ADMS-Urban dispersion calculations, including emissions and background concentrations, led to a significant increase (674% during winter) in modelled ozone. The inclusion of HONO chemistry in this mechanism, particularly during wintertime when other radical sources are limited, led to substantial increases in the ozone levels predicted (223%). When the GRS and CRIv2-R5 schemes are run with the equivalent model constraints to the MCM, they are able to reproduce the level of ozone predicted by the near-explicit MCM to within 40% and 20% respectively for the majority of the time. An exception to this trend was observed during pollution episodes experienced in the summer, when anticyclonic conditions favoured increased temperatures and elevated O3. The in situ O3 predicted by the MCM was heavily influenced by biogenic VOCs during these conditions and the low GRS [O3] : MCM [O3] ratio (and low CRIv2-R5 [O3] : MCM [O3] ratio) demonstrates that these less explicit schemes under-represent the full O3 creation potential of these VOCs. To fully assess the influence of the in situ O3 generated from local emissions versus O3 generated upwind of London and advected in, the time since emission (and, hence, how far the real atmosphere is from steady state) must be determined. From estimates of the mean transport time determined from the NOx : NOy ratio observed at North Kensington during the summer and comparison of the O3 predicted by the MCM model after this time, ∼60% of the median observed [O3] could be generated from local emissions. During the warmer conditions experienced during the easterly flows, however, the observed [O3] may be even more heavily influenced by London's emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA