Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2212075120, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36634137

RESUMO

Liquid methanol has the potential to be the hydrogen energy carrier and storage medium for the future green economy. However, there are still many challenges before zero-emission, affordable molecular H2 can be extracted from methanol with high performance. Here, we present noble-metal-free Cu-WC/W plasmonic nanohybrids which exhibit unsurpassed solar H2 extraction efficiency from pure methanol of 2,176.7 µmol g-1 h-1 at room temperature and normal pressure. Macro-to-micro experiments and simulations unveil that local reaction microenvironments are generated by the coperturbation of WC/W's lattice strain and infrared-plasmonic electric field. It enables spontaneous but selective zero-emission reaction pathways. Such microenvironments are found to be highly cooperative with solar-broadband-plasmon-excited charge carriers flowing from Cu to WC surfaces for efficient stable CH3OH plasmonic reforming with C3-dominated liquid products and 100% selective gaseous H2. Such high efficiency, without any COx emission, can be sustained for over a thousand-hour operation without obvious degradation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36656994

RESUMO

The chemical selectivity and faradaic efficiency of high-index Cu facets for the CO2 reduction reaction (CO2RR) is investigated. More specifically, shape-controlled nanoparticles enclosed by Cu {hk0} facets are fabricated using Cu multilayer deposition at three distinct layer thicknesses on the surface facets of Au truncated ditetragonal nanoprisms (Au DTPs). Au DTPs are shapes enclosed by 12 high-index {310} facets. Facet angle analysis confirms DTP geometry. Elemental mapping analysis shows Cu surface layers are uniformly distributed on the Au {310} facets of the DTPs. The 7 nm Au@Cu DTPs high-index {hk0} facets exhibit a CH4:CO product ratio of almost 10:1 compared to a 1:1 ratio for the reference 7 nm Au@Cu spherical nanoparticles (NPs). Operando Fourier transform infrared spectroscopy spectra disclose reactive adsorbed *CO as the main intermediate, whereas CO stripping experiments reveal the high-index facets enhance the *CO formation followed by rapid desorption or hydrogenation.

3.
Nanoscale Adv ; 4(21): 4502-4516, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36341304

RESUMO

Azide-terminated ultrasmall gold nanoparticles (2 nm gold core) were covalently functionalized with alkyne-terminated small-interfering siRNA duplexes by copper-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry). The nanoparticle core was visualized by transmission electron microscopy. The number of attached siRNA molecules per nanoparticle was determined by a combination of atomic absorption spectroscopy (AAS; for gold) and UV-Vis spectroscopy (for siRNA). Each nanoparticle carried between 6 and 10 siRNA duplex molecules which corresponds to a weight ratio of siRNA to gold of about 2.2 : 1. Different kinds of siRNA were conjugated to the nanoparticles, depending on the gene to be silenced. In general, the nanoparticles were readily taken up by cells and highly efficient in gene silencing, in contrast to free siRNA. This was demonstrated in HeLa-eGFP cells (silencing of eGFP) and in LPS-stimulated macrophages (silencing of NF-κB). Furthermore, we demonstrated that nanoparticles carrying antiviral siRNA potently inhibited the replication of Herpes simplex virus 2 (HSV-2) in vitro. This highlights the strong potential of siRNA-functionalized ultrasmall gold nanoparticles in a broad spectrum of applications, including gene silencing and treatment of viral infections, combined with a minimal dose of gold.

4.
Chem Sci ; 13(32): 9295-9304, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36093024

RESUMO

Recently proposed bimetallic octahedral Pt-Ni electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathodes suffer from particle instabilities in the form of Ni corrosion and shape degradation. Advanced trimetallic Pt-based electrocatalysts have contributed to their catalytic performance and stability. In this work, we propose and analyse a novel quaternary octahedral (oh-)Pt nanoalloy concept with two distinct metals serving as stabilizing surface dopants. An efficient solvothermal one-pot strategy was developed for the preparation of shape-controlled oh-PtNi catalysts doped with Rh and Mo in its surface. The as-prepared quaternary octahedral PtNi(RhMo) catalysts showed exceptionally high ORR performance accompanied by improved activity and shape integrity after stability tests compared to previously reported bi- and tri-metallic systems. Synthesis, performance characteristics and degradation behaviour are investigated targeting deeper understanding for catalyst system improvement strategies. A number of different operando and on-line analysis techniques were employed to monitor the structural and elemental evolution, including identical location scanning transmission electron microscopy and energy dispersive X-ray analysis (IL-STEM-EDX), operando wide angle X-ray spectroscopy (WAXS), and on-line scanning flow cell inductively coupled plasma mass spectrometry (SFC-ICP-MS). Our studies show that doping PtNi octahedral catalysts with small amounts of Rh and Mo suppresses detrimental Pt diffusion and thus offers an attractive new family of shaped Pt alloy catalysts for deployment in PEMFC cathode layers.

5.
Angew Chem Int Ed Engl ; 61(36): e202203728, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35802306

RESUMO

We report and analyze a synthetic strategy toward low-Pt platinum-nickel (Pt-Ni) alloy nanoparticle (NP) cathode catalysts for the catalytic electroreduction of molecular oxygen to water. The synthesis involves the pyrolysis and leaching of Ni-organic polymers, subsequent Pt NP deposition, followed by thermal alloying, resulting in single Ni atom site (NiNC)-supported PtNi alloy NPs at low Pt weight loadings of only 3-5 wt %. Despite low Pt weight loading, the catalysts exhibit more favorable Pt-mass activities compared to conventional 20-30 wt % benchmark PtNi catalysts. Using in situ microscopic techniques, we track and unravel the key stages of the PtNi alloy formation process directly at the atomic scale. Surprisingly, we find that carbon-encapsulated metallic Ni@C structures, rather than NiNx sites, act as the Ni source during alloy formation. Our materials concepts offer a pathway to further decrease the overall Pt content in hydrogen fuel cell cathodes.

6.
ACS Appl Mater Interfaces ; 14(26): 29690-29702, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731012

RESUMO

Over the past decade, advances in the colloidal syntheses of octahedral-shaped Pt-Ni alloy nanocatalysts for use in fuel cell cathodes have raised our atomic-scale control of particle morphology and surface composition, which, in turn, helped raise their catalytic activity far above that of benchmark Pt catalysts. Future fuel cell deployment in heavy-duty vehicles caused the scientific priorities to shift from alloy particle activity to stability. Larger particles generally offer enhanced thermodynamic stability, yet synthetic approaches toward larger octahedral Pt-Ni alloy nanoparticles have remained elusive. In this study, we show how a simple manipulation of solvothermal synthesis reaction kinetics involving depressurization of the gas phase at different stages of the reaction allows tuning the size of the resulting octahedral nanocatalysts to previously unachieved scales. We then link the underlying mechanism of our approach to the classical "LaMer" model of nucleation and growth. We focus on large, annealed Mo-doped Pt-Ni octahedra and investigate their synthesis, post-synthesis treatments, and elemental distribution using advanced electron microscopy. We evaluate the electrocatalytic ORR performance and stability and succeed to obtain a deeper understanding of the enhanced stability of a new class of relatively large, active, and long-lived Mo-doped Pt-Ni octahedral catalysts for the cathode of PEMFCs.

7.
Inorg Chem ; 61(12): 5133-5147, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35285631

RESUMO

Ultrasmall nanoparticles of platinum group metal oxides (core diameter of about 1.8 nm) were prepared by alkaline hydrolysis of metal precursors in the presence of NaBH4 and by colloidal stabilization with tripeptide glutathione. We obtained water-dispersed nanoparticles of Rh2O3, PdO, RuO2, IrO2, Os/OsO2, and Pt/PtO. Their size was probed using high-resolution transmission electron microscopy, differential centrifugal sedimentation, small-angle X-ray scattering, and diffusion-ordered 1H NMR spectroscopy (1H DOSY). Their oxidation state was clearly determined using X-ray photoelectron spectroscopy, X-ray powder diffraction, and electron diffraction. The chemical composition of the nanoparticles, that is, the ratio of the metal oxide core and glutathione capping agent, was quantitatively determined by a combination of these methods.


Assuntos
Nanopartículas Metálicas , Óxidos , Nanopartículas Metálicas/química , Óxidos/química , Platina/química , Água/química , Difração de Raios X
8.
J Phys Chem C Nanomater Interfaces ; 126(1): 786-796, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35059098

RESUMO

Using a combination of in situ bulk and surface characterization techniques, we provide atomic-scale insight into the complex surface and bulk dynamics of a LaNiO3 perovskite material during heating in vacuo. Driven by the outstanding activity LaNiO3 in the methane dry reforming reaction (DRM), attributable to the decomposition of LaNiO3 during DRM operation into a Ni//La2O3 composite, we reveal the Ni exsolution dynamics both on a local and global scale by in situ electron microscopy, in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy. To reduce the complexity and disentangle thermal from self-activation and reaction-induced effects, we embarked on a heating experiment in vacuo under comparable experimental conditions in all methods. Associated with the Ni exsolution, the remaining perovskite grains suffer a drastic shrinkage of the grain volume and compression of the structure. Ni particles mainly evolve at grain boundaries and stacking faults. Sophisticated structure analysis of the elemental composition by electron-energy loss mapping allows us to disentangle the distribution of the different structures resulting from LaNiO3 decomposition on a local scale. Important for explaining the DRM activity, our results indicate that most of the Ni moieties are oxidized and that the formation of NiO occurs preferentially at grain edges, resulting from the reaction of the exsolved Ni particles with oxygen released from the perovskite lattice during decomposition via a spillover process from the perovskite to the Ni particles. Correlating electron microscopy and X-ray diffraction data allows us to establish a sequential two-step process in the decomposition of LaNiO3 via a Ruddlesden-Popper La2NiO4 intermediate structure. Exemplified for the archetypical LaNiO3 perovskite material, our results underscore the importance of focusing on both surface and bulk characterization for a thorough understanding of the catalyst dynamics and set the stage for a generalized concept in the understanding of state-of-the art catalyst materials on an atomic level.

9.
Adv Mater ; 34(10): e2108835, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35043500

RESUMO

The shuttling behavior and sluggish conversion kinetics of the intermediate lithium polysulfides (LiPS) represent the main obstructions to the practical application of lithium-sulfur batteries (LSBs). Herein, a 1D π-d conjugated metal-organic framework (MOF), Ni-MOF-1D, is presented as an efficient sulfur host to overcome these limitations. Experimental results and density functional theory calculations demonstrate that Ni-MOF-1D is characterized by a remarkable binding strength for trapping soluble LiPS species. Ni-MOF-1D also acts as an effective catalyst for S reduction during the discharge process and Li2 S oxidation during the charging process. In addition, the delocalization of electrons in the π-d system of Ni-MOF-1D provides a superior electrical conductivity to improve electron transfer. Thus, cathodes based on Ni-MOF-1D enable LSBs with excellent performance, for example, impressive cycling stability with over 82% capacity retention over 1000 cycles at 3 C, superior rate performance of 575 mAh g-1 at 8 C, and a high areal capacity of 6.63 mAh cm-2 under raised sulfur loading of 6.7 mg cm-2 . The strategies and advantages here demonstrated can be extended to a broader range of π-d conjugated MOFs materials, which the authors believe have a high potential as sulfur hosts in LSBs.

10.
Molecules ; 26(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34443657

RESUMO

Two ways to deliver ultrasmall gold nanoparticles and gold-bovine serum albumin (BSA) nanoclusters to the colon were developed. First, oral administration is possible by incorporation into gelatin capsules that were coated with an enteric polymer. These permit the transfer across the stomach whose acidic environment damages many drugs. The enteric coating dissolves due to the neutral pH of the colon and releases the capsule's cargo. Second, rectal administration is possible by incorporation into hard-fat suppositories that melt in the colon and then release the nanocarriers. The feasibility of the two concepts was demonstrated by in-vitro release studies and cell culture studies that showed the easy redispersibility after dissolution of the respective transport system. This clears a pathway for therapeutic applications of drug-loaded nanoparticles to address colon diseases, such as chronic inflammation and cancer.


Assuntos
Colo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas Metálicas/química , Polímeros/farmacologia , Administração Oral , Cápsulas/química , Cápsulas/farmacologia , Gelatina/química , Gelatina/farmacologia , Ouro/química , Ouro/farmacologia , Humanos , Polímeros/química , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacologia , Supositórios/química , Supositórios/farmacologia
11.
Mater Chem Front ; 5(13): 5093-5105, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34262777

RESUMO

The adaption of the sol-gel autocombustion method to the Cu/ZrO2 system opens new pathways for the specific optimisation of the activity, long-term stability and CO2 selectivity of methanol steam reforming (MSR) catalysts. Calcination of the same post-combustion precursor at 400 °C, 600 °C or 800 °C allows accessing Cu/ZrO2 interfaces of metallic Cu with either amorphous, tetragonal or monoclinic ZrO2, influencing the CO2 selectivity and the MSR activity distinctly different. While the CO2 selectivity is less affected, the impact of the post-combustion calcination temperature on the Cu and ZrO2 catalyst morphology is more pronounced. A porous and largely amorphous ZrO2 structure in the sample, characteristic for sol-gel autocombustion processes, is obtained at 400 °C. This directly translates into superior activity and long-term stability in MSR compared to Cu/tetragonal ZrO2 and Cu/monoclinic ZrO2 obtained by calcination at 600 °C and 800 °C. The morphology of the latter Cu/ZrO2 catalysts consists of much larger, agglomerated and non-porous crystalline particles. Based on aberration-corrected electron microscopy, we attribute the beneficial catalytic properties of the Cu/amorphous ZrO2 material partially to the enhanced sintering resistance of copper particles provided by the porous support morphology.

12.
J Phys Chem B ; 125(21): 5645-5659, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34029093

RESUMO

Ultrasmall silver nanoparticles were prepared by reduction with NaBH4 and surface-terminated with glutathione (GSH). The particles had a solid core diameter of 2 nm as shown by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). NMR-DOSY gave a hydrodynamic diameter of 2 to 2.8 nm. X-ray photoelectron spectroscopy (XPS) showed that silver is bound to the thiol group of the central cysteine in glutathione under partial oxidation to silver(+I). In turn, the thiol group is deprotonated to thiolate. X-ray powder diffraction (XRD) together with Rietveld refinement confirmed a twinned (polycrystalline) fcc structure of ultrasmall silver nanoparticles with a lattice compression of about 0.9% compared to bulk silver metal. By NMR spectroscopy, the interaction between the glutathione ligand and the silver surface was analyzed, also with 13C-labeled glutathione. The adsorbed glutathione is fully intact and binds to the silver surface via cysteine. In situ 1H NMR spectroscopy up to 85 °C in dispersion showed that the glutathione ligand did not detach from the surface of the silver nanoparticle, i.e. the silver-sulfur bond is remarkably strong. The ultrasmall nanoparticles had a higher cytotoxicity than bigger particles in in vitro cell culture with HeLa cells with a cytotoxic concentration of about 1 µg mL-1 after 24 h incubation. The overall stoichiometry of the nanoparticles was about Ag∼250GSH∼155.


Assuntos
Nanopartículas Metálicas , Prata , Células HeLa , Humanos , Ligantes , Nanopartículas Metálicas/toxicidade , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Difração de Raios X
13.
Ultramicroscopy ; 231: 113270, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33888359

RESUMO

Computer simulations are used to assess the influence of a 20-nm-thick SiNx membrane on the quantification of atomic-resolution annular dark-field (ADF) scanning transmission electron microscopy images of Pt nanoparticles. The discussions include the effect of different nanoparticle/membrane arrangements, accelerating voltage, nanoparticle thickness and the presence of adjacent atomic columns on the accuracy with which the number of Pt atoms in each atom column can be counted. The results, which are based on the use of ADF scattering cross-sections, show that an accuracy of better than a single atom is attainable at 200 and 300 kV. At 80kV, the scattering in a typical SiNx membrane is sufficiently strong that the best possible atom counting accuracy is reduced to +/- 2 atoms. The implications of the work for quantitative studies of Pt nanoparticles imaged through SiNx membranes are discussed.

14.
Microsc Microanal ; : 1-15, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843542

RESUMO

The invention of silicon drift detectors has resulted in an unprecedented improvement in detection efficiency for energy-dispersive X-ray (EDX) spectroscopy in the scanning transmission electron microscope. The result is numerous beautiful atomic-scale maps, which provide insights into the internal structure of a variety of materials. However, the task still remains to understand exactly where the X-ray signal comes from and how accurately it can be quantified. Unfortunately, when crystals are aligned with a low-order zone axis parallel to the incident beam direction, as is necessary for atomic-resolution imaging, the electron beam channels. When the beam becomes localized in this way, the relationship between the concentration of a particular element and its spectroscopic X-ray signal is generally nonlinear. Here, we discuss the combined effect of both spatial integration and sample tilt for ameliorating the effects of channeling and improving the accuracy of EDX quantification. Both simulations and experimental results will be presented for a perovskite-based oxide interface. We examine how the scattering and spreading of the electron beam can lead to erroneous interpretation of interface compositions, and what approaches can be made to improve our understanding of the underlying atomic structure.

15.
Nat Commun ; 12(1): 1435, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664267

RESUMO

Although Cu/ZnO-based catalysts have been long used for the hydrogenation of CO2 to methanol, open questions still remain regarding the role and the dynamic nature of the active sites formed at the metal-oxide interface. Here, we apply high-pressure operando spectroscopy methods to well-defined Cu and Cu0.7Zn0.3 nanoparticles supported on ZnO/Al2O3, γ-Al2O3 and SiO2 to correlate their structure, composition and catalytic performance. We obtain similar activity and methanol selectivity for Cu/ZnO/Al2O3 and CuZn/SiO2, but the methanol yield decreases with time on stream for the latter sample. Operando X-ray absorption spectroscopy data reveal the formation of reduced Zn species coexisting with ZnO on CuZn/SiO2. Near-ambient pressure X-ray photoelectron spectroscopy shows Zn surface segregation and the formation of a ZnO-rich shell on CuZn/SiO2. In this work we demonstrate the beneficial effect of Zn, even in diluted form, and highlight the influence of the oxide support and the Cu-Zn interface in the reactivity.

16.
ACS Catal ; 11(1): 43-59, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33425477

RESUMO

The influence of A- and/or B-site doping of Ruddlesden-Popper perovskite materials on the crystal structure, stability, and dry reforming of methane (DRM) reactivity of specific A2BO4 phases (A = La, Ba; B = Cu, Ni) has been evaluated by a combination of catalytic experiments, in situ X-ray diffraction, X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and aberration-corrected electron microscopy. At room temperature, B-site doping of La2NiO4 with Cu stabilizes the orthorhombic structure (Fmmm) of the perovskite, while A-site doping with Ba yields a tetragonal space group (I4/mmm). We observed the orthorhombic-to-tetragonal transformation above 170 °C for La2Ni0.9Cu0.1O4 and La2Ni0.8Cu0.2O4, slightly higher than for undoped La2NiO4. Loss of oxygen in interstitial sites of the tetragonal structure causes further structure transformations for all samples before decomposition in the temperature range of 400 °C-600 °C. Controlled in situ decomposition of the parent or A/B-site doped perovskite structures in a DRM mixture (CH4:CO2 = 1:1) in all cases yields an active phase consisting of exsolved nanocrystalline metallic Ni particles in contact with hexagonal La2O3 and a mixture of (oxy)carbonate phases (hexagonal and monoclinic La2O2CO3, BaCO3). Differences in the catalytic activity evolve because of (i) the in situ formation of Ni-Cu alloy phases (in a composition of >7:1 = Ni:Cu) for La2Ni0.9Cu0.1O4, La2Ni0.8Cu0.2O4, and La1.8Ba0.2Ni0.9Cu0.1O4, (ii) the resulting Ni particle size and amount of exsolved Ni, and (iii) the inherently different reactivity of the present (oxy)carbonate species. Based on the onset temperature of catalytic DRM activity, the latter decreases in the order of La2Ni0.9Cu0.1O4 ∼ La2Ni0.8Cu0.2O4 ≥ La1.8Ba0.2Ni0.9Cu0.1O4 > La2NiO4 > La1.8Ba0.2NiO4. Simple A-site doped La1.8Ba0.2NiO4 is essentially DRM inactive. The Ni particle size can be efficiently influenced by introducing Ba into the A site of the respective Ruddlesden-Popper structures, allowing us to control the Ni particle size between 10 nm and 30 nm both for simple B-site and A-site doped structures. Hence, it is possible to steer both the extent of the metal-oxide-(oxy)carbonate interface and its chemical composition and reactivity. Counteracting the limitation of the larger Ni particle size, the activity can, however, be improved by additional Cu-doping on the B-site, enhancing the carbon reactivity. Exemplified for the La2NiO4 based systems, we show how the delicate antagonistic balance of doping with Cu (rendering the La2NiO4 structure less stable and suppressing coking by efficiently removing surface carbon) and Ba (rendering the La2NiO4 structure more stable and forming unreactive surface or interfacial carbonates) can be used to tailor prospective DRM-active catalysts.

17.
Chembiochem ; 22(8): 1456-1463, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33275809

RESUMO

The surface of ultrasmall gold nanoparticles with an average diameter of 1.55 nm was conjugated with a 14-3-3 protein-binding peptide derived from CRaf. Each particle carries 18 CRaf peptides, leading to an overall stoichiometry of Au(115)Craf(18). The binding to the protein 14-3-3 was probed by isothermal titration calorimetry (ITC) and fluorescence polarization spectroscopy (FP). The dissociation constant (KD ) was measured as 5.0 µM by ITC and 0.9 µM by FP, which was close to the affinity of dissolved CRaf to 14-3-3σ. In contrast to dissolved CRaf, which alone did not enter HeLa cells, CRAF-conjugated gold nanoparticles were well taken up by HeLa cells, opening the opportunity to target the protein inside a cell.


Assuntos
Proteínas 14-3-3/química , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Células HeLa , Humanos , Tamanho da Partícula , Propriedades de Superfície
18.
Chemistry ; 27(4): 1451-1464, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-32959929

RESUMO

Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1 H NMR spectroscopy, 1 H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1 H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.

19.
J Phys Chem B ; 125(1): 115-127, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356267

RESUMO

A strategy toward epitope-selective functionalized nanoparticles is introduced in the following: ultrasmall gold nanoparticles (diameter of the metallic core about 2 nm) were functionalized with molecular tweezers that selectively attach lysine and arginine residues on protein surfaces. Between 11 and 30 tweezer molecules were covalently attached to the surface of each nanoparticle by copper-catalyzed azide alkyne cycloaddition (CuAAC), giving multiavid agents to target proteins. The nanoparticles were characterized by high-resolution transmission electron microscopy, differential centrifugal sedimentation, and 1H NMR spectroscopy (diffusion-ordered spectroscopy, DOSY, and surface composition). The interaction of these nanoparticles with the model proteins hPin1 (WW domain; hPin1-WW) and Survivin was probed by NMR titration and by isothermal titration calorimetry (ITC). The binding to the WW domain of hPin1 occurred with a KD of 41 ± 2 µM, as shown by ITC. The nanoparticle-conjugated tweezers targeted cationic amino acids on the surface of hPin1-WW in the following order: N-terminus (G) ≈ R17 > R14 ≈ R21 > K13 > R36 > K6, as shown by NMR spectroscopy. Nanoparticle recognition of the larger protein Survivin was even more efficient and occurred with a KD of 8 ± 1 µM, as shown by ITC. We conclude that ultrasmall nanoparticles can act as versatile carriers for artificial protein ligands and strengthen their interaction with the complementary patches on the protein surface.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Aminoácidos , Ouro , Ligantes , Modelos Moleculares
20.
ACS Nano ; 14(10): 13806-13815, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32924433

RESUMO

Semiconductor nanocrystals, or quantum dots (QDs), simultaneously benefit from inexpensive low-temperature solution processing and exciting photophysics, making them the ideal candidates for next-generation solar cells and photodetectors. While the working principles of these devices rely on light absorption, QDs intrinsically belong to the Rayleigh regime and display optical behavior limited to electric dipole resonances, resulting in low absorption efficiencies. Increasing the absorption efficiency of QDs, together with their electronic and excitonic coupling to enhance charge carrier mobility, is therefore of critical importance to enable practical applications. Here, we demonstrate a general and scalable approach to increase both light absorption and excitonic coupling of QDs by fabricating hierarchical metamaterials. We assemble QDs into crystalline supraparticles using an emulsion template and demonstrate that these colloidal supercrystals (SCs) exhibit extended resonant optical behavior resulting in an enhancement in absorption efficiency in the visible range of more than 2 orders of magnitude with respect to the case of dispersed QDs. This successful light trapping strategy is complemented by the enhanced excitonic coupling observed in ligand-exchanged SCs, experimentally demonstrated through ultrafast transient absorption spectroscopy and leading to the formation of a free biexciton system on sub-picosecond time scales. These results introduce a colloidal metamaterial designed by self-assembly from the bottom up, simultaneously featuring a combination of nanoscale and mesoscale properties leading to simultaneous photonic and excitonic coupling, therefore presenting the nanocrystal analogue of supramolecular structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...