Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Med ; 11(1): 38, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31203817

RESUMO

BACKGROUND: Diagnosis of primary immunodeficiencies (PIDs) is complex and cumbersome yet important for the clinical management of the disease. Exome sequencing may provide a genetic diagnosis in a significant number of patients in a single genetic test. METHODS: In May 2013, we implemented exome sequencing in routine diagnostics for patients suffering from PIDs. This study reports the clinical utility and diagnostic yield for a heterogeneous group of 254 consecutively referred PID patients from 249 families. For the majority of patients, the clinical diagnosis was based on clinical criteria including rare and/or unusual severe bacterial, viral, or fungal infections, sometimes accompanied by autoimmune manifestations. Functional immune defects were interpreted in the context of aberrant immune cell populations, aberrant antibody levels, or combinations of these factors. RESULTS: For 62 patients (24%), exome sequencing identified pathogenic variants in well-established PID genes. An exome-wide analysis diagnosed 10 additional patients (4%), providing diagnoses for 72 patients (28%) from 68 families altogether. The genetic diagnosis directly indicated novel treatment options for 25 patients that received a diagnosis (34%). CONCLUSION: Exome sequencing as a first-tier test for PIDs granted a diagnosis for 28% of patients. Importantly, molecularly defined diagnoses indicated altered therapeutic options in 34% of cases. In addition, exome sequencing harbors advantages over gene panels as a truly generic test for all genetic diseases, including in silico extension of existing gene lists and re-analysis of existing data.

2.
Am J Hum Genet ; 104(4): 758-766, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929739

RESUMO

By using exome sequencing and a gene matching approach, we identified de novo and inherited pathogenic variants in KDM3B in 14 unrelated individuals and three affected parents with varying degrees of intellectual disability (ID) or developmental delay (DD) and short stature. The individuals share additional phenotypic features that include feeding difficulties in infancy, joint hypermobility, and characteristic facial features such as a wide mouth, a pointed chin, long ears, and a low columella. Notably, two individuals developed cancer, acute myeloid leukemia and Hodgkin lymphoma, in childhood. KDM3B encodes for a histone demethylase and is involved in H3K9 demethylation, a crucial part of chromatin modification required for transcriptional regulation. We identified missense and truncating variants, suggesting that KDM3B haploinsufficiency is the underlying mechanism for this syndrome. By using a hybrid facial-recognition model, we show that individuals with a pathogenic variant in KDM3B have a facial gestalt, and that they show significant facial similarity compared to control individuals with ID. In conclusion, pathogenic variants in KDM3B cause a syndrome characterized by ID, short stature, and facial dysmorphism.

3.
Genet Med ; 21(8): 1719-1725, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30568311

RESUMO

PURPOSE: The interpretation of genetic variants after genome-wide analysis is complex in heterogeneous disorders such as intellectual disability (ID). We investigate whether algorithms can be used to detect if a facial gestalt is present for three novel ID syndromes and if these techniques can help interpret variants of uncertain significance. METHODS: Facial features were extracted from photos of ID patients harboring a pathogenic variant in three novel ID genes (PACS1, PPM1D, and PHIP) using algorithms that model human facial dysmorphism, and facial recognition. The resulting features were combined into a hybrid model to compare the three cohorts against a background ID population. RESULTS: We validated our model using images from 71 individuals with Koolen-de Vries syndrome, and then show that facial gestalts are present for individuals with a pathogenic variant in PACS1 (p = 8 × 10-4), PPM1D (p = 4.65 × 10-2), and PHIP (p = 6.3 × 10-3). Moreover, two individuals with a de novo missense variant of uncertain significance in PHIP have significant similarity to the expected facial phenotype of PHIP patients (p < 1.52 × 10-2). CONCLUSION: Our results show that analysis of facial photos can be used to detect previously unknown facial gestalts for novel ID syndromes, which will facilitate both clinical and molecular diagnosis of rare and novel syndromes.

4.
Expert Rev Mol Diagn ; 18(10): 907-915, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30221560

RESUMO

INTRODUCTION: The role of copy number variants (CNVs) in disease is now well established. In parallel NGS technologies, such as long-read technologies, there is continual development and data analysis methods continue to be refined. Clinical exome sequencing data is now a reality for many diagnostic laboratories in both congenital genetics and oncology. This provides the ability to detect and report both SNVs and structural variants, including CNVs, using a single assay for a wide range of patient cohorts. Areas covered: Currently, whole-genome sequencing is mainly restricted to research applications and clinical utility studies. Furthermore, detecting the full-size spectrum of CNVs as well as somatic events remains difficult for both exome and whole-genome sequencing. As a result, the full extent of genomic variants in an individual's genome is still largely unknown. Recently, new sequencing technologies have been introduced which maintain the long-range genomic context, aiding the detection of CNVs and structural variants. Expert commentary: The development of long-read sequencing promises to resolve many CNV and SV detection issues but is yet to become established. The current challenge for clinical CNV detection is how to fully exploit all the data which is generated by high throughput sequencing technologies.

5.
Hum Mutat ; 38(11): 1592-1605, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801929

RESUMO

Microdeletions of the Y chromosome (YCMs), Klinefelter syndrome (47,XXY), and CFTR mutations are known genetic causes of severe male infertility, but the majority of cases remain idiopathic. Here, we describe a novel method using single molecule Molecular Inversion Probes (smMIPs), to screen infertile men for mutations and copy number variations affecting known disease genes. We designed a set of 4,525 smMIPs targeting the coding regions of causal (n = 6) and candidate (n = 101) male infertility genes. After extensive validation, we screened 1,112 idiopathic infertile men with non-obstructive azoospermia or severe oligozoospermia. In addition to five chromosome YCMs and six other sex chromosomal anomalies, we identified five patients with rare recessive mutations in CFTR as well as a patient with a rare heterozygous frameshift mutation in SYCP3 that may be of clinical relevance. This results in a genetic diagnosis in 11-17 patients (1%-1.5%), a yield that may increase significantly when more genes are confidently linked to male infertility. In conclusion, we developed a flexible and scalable method to reliably detect genetic causes of male infertility. The assay consolidates the detection of different types of genetic variation while increasing the diagnostic yield and detection precision at the same or lower price compared with currently used methods.


Assuntos
Azoospermia/diagnóstico , Azoospermia/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Oligospermia/diagnóstico , Oligospermia/genética , Aberrações Cromossômicas , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Estudos de Associação Genética/métodos , Estudos de Associação Genética/normas , Testes Genéticos/métodos , Testes Genéticos/normas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Fenótipo , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Aberrações dos Cromossomos Sexuais , Contagem de Espermatozoides
6.
Genet Med ; 19(6): 667-675, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28574513

RESUMO

PURPOSE: Copy-number variation is a common source of genomic variation and an important genetic cause of disease. Microarray-based analysis of copy-number variants (CNVs) has become a first-tier diagnostic test for patients with neurodevelopmental disorders, with a diagnostic yield of 10-20%. However, for most other genetic disorders, the role of CNVs is less clear and most diagnostic genetic studies are generally limited to the study of single-nucleotide variants (SNVs) and other small variants. With the introduction of exome and genome sequencing, it is now possible to detect both SNVs and CNVs using an exome- or genome-wide approach with a single test. METHODS: We performed exome-based read-depth CNV screening on data from 2,603 patients affected by a range of genetic disorders for which exome sequencing was performed in a diagnostic setting. RESULTS: In total, 123 clinically relevant CNVs ranging in size from 727 bp to 15.3 Mb were detected, which resulted in 51 conclusive diagnoses and an overall increase in diagnostic yield of ~2% (ranging from 0 to -5.8% per disorder). CONCLUSIONS: This study shows that CNVs play an important role in a broad range of genetic disorders and that detection via exome-based CNV profiling results in an increase in the diagnostic yield without additional testing, bringing us closer to single-test genomics.Genet Med advance online publication 27 October 2016.


Assuntos
Variações do Número de Cópias de DNA , Exoma , Doenças Genéticas Inatas/genética , Sequenciamento Completo do Genoma , Estudos de Coortes , Genoma Humano , Humanos , Padrões de Herança , Masculino , Polimorfismo de Nucleotídeo Único
7.
Oncotarget ; 8(15): 24533-24547, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28445943

RESUMO

The currently known Mendelian colorectal cancer (CRC) predisposition syndromes account for ~5-10% of all CRC cases, and are caused by inherited germline mutations in single CRC predisposing genes. Using molecular inversion probes (MIPs), we designed a targeted next-generation sequencing panel to identify mutations in seven CRC predisposing genes: APC, MLH1, MSH2, MSH6, PMS2, MUTYH and NTHL1. From a consecutive series of 2,371 Chinese CRC patients, 140 familial and non-familial cases were selected that were diagnosed with CRC at or below the age of 35 years. Through MIP-based sequencing we identified pathogenic variants in six genes in 16 out of the 140 (11.4%) patients selected. In 10 patients, known pathogenic mutations in APC (five patients), MLH1 (three patients), or MSH2 (two patients) were identified. Three additional patients were found to carry novel, likely pathogenic truncating (n = 2) and missense (n = 1) mutations in the MSH2 gene and a concomitant loss of expression of both the MSH2 and MSH6 proteins in their respective tumor tissues. From our data, we conclude that targeted MIP-based sequencing is a reliable and cost-efficient approach to identify patients with a Mendelian CRC syndrome.


Assuntos
Neoplasias Colorretais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adolescente , Adulto , Grupo com Ancestrais do Continente Asiático , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Sondas Moleculares , Adulto Jovem
8.
Eur J Hum Genet ; 25(5): 591-599, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28224992

RESUMO

Inherited eye disorders have a large clinical and genetic heterogeneity, which makes genetic diagnosis cumbersome. An exome-sequencing approach was developed in which data analysis was divided into two steps: the vision gene panel and exome analysis. In the vision gene panel analysis, variants in genes known to cause inherited eye disorders were assessed for pathogenicity. If no causative variants were detected and when the patient consented, the entire exome data was analyzed. A total of 266 Dutch patients with different types of inherited eye disorders, including inherited retinal dystrophies, cataract, developmental eye disorders and optic atrophy, were investigated. In the vision gene panel analysis (likely), causative variants were detected in 49% and in the exome analysis in an additional 2% of the patients. The highest detection rate of (likely) causative variants was in patients with inherited retinal dystrophies, for instance a yield of 63% in patients with retinitis pigmentosa. In patients with developmental eye defects, cataract and optic atrophy, the detection rate was 50, 33 and 17%, respectively. An exome-sequencing approach enables a genetic diagnosis in patients with different types of inherited eye disorders using one test. The exome approach has the same detection rate as targeted panel sequencing tests, but offers a number of advantages. For instance, the vision gene panel can be frequently and easily updated with additional (novel) eye disorder genes. Determination of the genetic diagnosis improved the clinical diagnosis, regarding the assessment of the inheritance pattern as well as future disease perspective.


Assuntos
Exoma , Oftalmopatias Hereditárias/genética , Padrões de Herança , Transtornos da Visão/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Oftalmopatias Hereditárias/patologia , Humanos , Países Baixos , Transtornos da Visão/patologia
9.
Eur J Hum Genet ; 25(3): 308-314, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28000701

RESUMO

Hearing impairment (HI) is genetically heterogeneous which hampers genetic counseling and molecular diagnosis. Testing of several single HI-related genes is laborious and expensive. In this study, we evaluate the diagnostic utility of whole-exome sequencing (WES) targeting a panel of HI-related genes. Two hundred index patients, mostly of Dutch origin, with presumed hereditary HI underwent WES followed by targeted analysis of an HI gene panel of 120 genes. We found causative variants underlying the HI in 67 of 200 patients (33.5%). Eight of these patients have a large homozygous deletion involving STRC, OTOA or USH2A, which could only be identified by copy number variation detection. Variants of uncertain significance were found in 10 patients (5.0%). In the remaining 123 cases, no potentially causative variants were detected (61.5%). In our patient cohort, causative variants in GJB2, USH2A, MYO15A and STRC, and in MYO6 were the leading causes for autosomal recessive and dominant HI, respectively. Segregation analysis and functional analyses of variants of uncertain significance will probably further increase the diagnostic yield of WES.


Assuntos
Exoma , Testes Genéticos/estatística & dados numéricos , Perda Auditiva/genética , Análise de Sequência de DNA/estatística & dados numéricos , Conexinas/genética , Variações do Número de Cópias de DNA , Proteínas da Matriz Extracelular/genética , Proteínas Ligadas por GPI/genética , Testes Genéticos/normas , Perda Auditiva/diagnóstico , Perda Auditiva/epidemiologia , Humanos , Proteínas de Membrana/genética , Mutação , Cadeias Pesadas de Miosina/genética , Miosinas/genética , Países Baixos , Análise de Sequência de DNA/normas
11.
Nat Commun ; 7: 12989, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708267

RESUMO

Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic variation. Here, we analyse whole genome sequencing data of 769 individuals from 250 Dutch families, and provide a haplotype-resolved map of 1.9 million genome variants across 9 different variant classes, including novel forms of complex indels, and retrotransposition-mediated insertions of mobile elements and processed RNAs. A large proportion are previously under reported variants sized between 21 and 100 bp. We detect 4 megabases of novel sequence, encoding 11 new transcripts. Finally, we show 191 known, trait-associated SNPs to be in strong linkage disequilibrium with SVs and demonstrate that our panel facilitates accurate imputation of SVs in unrelated individuals.


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Genômica , Algoritmos , Cromossomos/ultraestrutura , Biologia Computacional , Deleção de Genes , Genótipo , Haplótipos , Humanos , Mutação INDEL , Desequilíbrio de Ligação , Países Baixos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , RNA/metabolismo , Análise de Sequência de DNA , Análise de Sequência de RNA , Software
12.
Eur J Hum Genet ; 24(12): 1707-1714, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27552964

RESUMO

Autosomal dominant polycystic liver disease (ADPLD) is caused by variants in PRKCSH, SEC63, and LRP5, whereas autosomal dominant polycystic kidney disease is caused by variants in PKD1 and PKD2. Liver cyst development in these disorders is explained by somatic loss-of-heterozygosity (LOH) of the wild-type allele in the developing cyst. We hypothesize that we can use this mechanism to identify novel disease genes that reside in LOH regions. In this study, we aim to map abnormal genomic regions using high-density SNP microarrays to find novel PLD genes. We collected 46 cysts from 23 patients with polycystic or sporadic hepatic cysts, and analyzed DNA from those cysts using high-resolution microarray (n=24) or Sanger sequencing (n=22). We here focused on regions of homozygosity on the autosomes (>3.0 Mb) and large CNVs (>1.0 Mb). We found frequent LOH in PRKCSH (22/29) and PKD1/PKD2 (2/3) cysts of patients with known heterozygous germline variants in the respective genes. In the total cohort, 12/23 patients harbored abnormalities outside of familiar areas. In individual ADPLD cases, we identified germline events: a 2q13 complex rearrangement resulting in BUB1 haploinsufficiency, a 47XXX karyotype, chromosome 9q copy-number loss, and LOH on chromosome 3p. The latter region was overlapping with an LOH region identified in two other cysts. Unique germline and somatic abnormalities occur frequently in and outside of known genes underlying cysts. Each liver cyst has a unique genetic makeup. LOH driver gene BUB1 may imply germline causes of genetic instability in PLD.


Assuntos
Aberrações Cromossômicas , Cistos/genética , Hepatopatias/genética , Proteínas Serina-Treonina Quinases/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos X , Cistos/patologia , Feminino , Mutação em Linhagem Germinativa , Glucosidases/genética , Haploinsuficiência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/patologia , Hepatopatias/patologia , Masculino , Pessoa de Meia-Idade , Aberrações dos Cromossomos Sexuais , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual , Canais de Cátion TRPP/genética , Trissomia
13.
Eur J Hum Genet ; 24(5): 652-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26306646

RESUMO

The Koolen-de Vries syndrome (KdVS; OMIM #610443), also known as the 17q21.31 microdeletion syndrome, is a clinically heterogeneous disorder characterised by (neonatal) hypotonia, developmental delay, moderate intellectual disability, and characteristic facial dysmorphism. Expressive language development is particularly impaired compared with receptive language or motor skills. Other frequently reported features include social and friendly behaviour, epilepsy, musculoskeletal anomalies, congenital heart defects, urogenital malformations, and ectodermal anomalies. The syndrome is caused by a truncating variant in the KAT8 regulatory NSL complex unit 1 (KANSL1) gene or by a 17q21.31 microdeletion encompassing KANSL1. Herein we describe a novel cohort of 45 individuals with KdVS of whom 33 have a 17q21.31 microdeletion and 12 a single-nucleotide variant (SNV) in KANSL1 (19 males, 26 females; age range 7 months to 50 years). We provide guidance about the potential pitfalls in the laboratory testing and emphasise the challenges of KANSL1 variant calling and DNA copy number analysis in the complex 17q21.31 region. Moreover, we present detailed phenotypic information, including neuropsychological features, that contribute to the broad phenotypic spectrum of the syndrome. Comparison of the phenotype of both the microdeletion and SNV patients does not show differences of clinical importance, stressing that haploinsufficiency of KANSL1 is sufficient to cause the full KdVS phenotype.


Assuntos
Anormalidades Múltiplas/diagnóstico , Deficiência Intelectual/diagnóstico , Proteínas Nucleares/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade
15.
Expert Rev Mol Diagn ; 15(8): 1023-32, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26088785

RESUMO

Many laboratories now use genomic microarrays as their first-tier diagnostic test for copy number variation (CNV) detection. In addition, whole exome sequencing is increasingly being offered as a diagnostic test for heterogeneous disorders. Although mostly used for the detection of point mutations and small insertion-deletions, exome sequencing can also be used to call CNVs, allowing combined small and large variant analysis. Whole genome sequencing in addition to these advantages also offers the potential to characterize CNVs to unprecedented levels of accuracy, providing position and orientation information. In this review, we discuss the clinical potential of CNV identification in whole exome sequencing and whole genome sequencing data and the implications this has on diagnostic laboratories.


Assuntos
Variações do Número de Cópias de DNA , Exoma , Genoma Humano , Humanos
16.
Eur J Hum Genet ; 23(12): 1601-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26036857

RESUMO

In 2013, the American College of Medical Genetics (ACMG) examined the issue of incidental findings in whole exome and whole genome sequencing, and introduced recommendations to search for, evaluate and report medically actionable variants in a set of 56 genes. At a debate held during the 2014 European Society for Human Genetics Conference (ESHG) in Milan, Italy, the first author of that paper presented this view in a debate session that did not end with a conclusive vote from the mainly European audience for or against reporting back actionable incidental findings. In this meeting report, we elaborate on the discussions held during a special meeting hosted at the ESHG in 2013 from posing the question 'How to reach a (European) consensus on reporting incidental findings and unclassified variants in diagnostic next generation sequencing'. We ask whether an European consensus exists on the reporting of incidental findings in genome diagnostics, and present a series of key issues that require discussion at both a national and European level in order to develop recommendations for handling incidental findings and unclassified variants in line with the legal and cultural particularities of individual European member states.


Assuntos
Conferências de Consenso como Assunto , Sequenciamento de Nucleotídeos em Larga Escala/normas , Análise de Sequência de DNA/normas , União Europeia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Achados Incidentais , Análise de Sequência de DNA/métodos
17.
Nat Genet ; 47(6): 668-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938944

RESUMO

The genetic cause underlying the development of multiple colonic adenomas, the premalignant precursors of colorectal cancer (CRC), frequently remains unresolved in patients with adenomatous polyposis. Here we applied whole-exome sequencing to 51 individuals with multiple colonic adenomas from 48 families. In seven affected individuals from three unrelated families, we identified a homozygous germline nonsense mutation in the base-excision repair (BER) gene NTHL1. This mutation was exclusively found in a heterozygous state in controls (minor allele frequency of 0.0036; n = 2,329). All three families showed recessive inheritance of the adenomatous polyposis phenotype and progression to CRC in at least one member. All three affected women developed an endometrial malignancy or premalignancy. Genetic analysis of three carcinomas and five adenomas from different affected individuals showed a non-hypermutated profile enriched for cytosine-to-thymine transitions. We conclude that a homozygous loss-of-function germline mutation in the NTHL1 gene predisposes to a new subtype of BER-associated adenomatous polyposis and CRC.


Assuntos
Polipose Adenomatosa do Colo/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Estudos de Casos e Controles , Códon sem Sentido , Análise Mutacional de DNA , Reparo do DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Homozigoto , Humanos , Pessoa de Meia-Idade , Linhagem
18.
Genome Res ; 25(6): 792-801, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25883321

RESUMO

Small insertions and deletions (indels) and large structural variations (SVs) are major contributors to human genetic diversity and disease. However, mutation rates and characteristics of de novo indels and SVs in the general population have remained largely unexplored. We report 332 validated de novo structural changes identified in whole genomes of 250 families, including complex indels, retrotransposon insertions, and interchromosomal events. These data indicate a mutation rate of 2.94 indels (1-20 bp) and 0.16 SVs (>20 bp) per generation. De novo structural changes affect on average 4.1 kbp of genomic sequence and 29 coding bases per generation, which is 91 and 52 times more nucleotides than de novo substitutions, respectively. This contrasts with the equal genomic footprint of inherited SVs and substitutions. An excess of structural changes originated on paternal haplotypes. Additionally, we observed a nonuniform distribution of de novo SVs across offspring. These results reveal the importance of different mutational mechanisms to changes in human genome structure across generations.


Assuntos
Variação Genética , Genoma Humano , Alelos , Sequência de Aminoácidos , Feminino , Genômica , Haplótipos , Humanos , Mutação INDEL , Masculino , Dados de Sequência Molecular , Taxa de Mutação , Polimorfismo de Nucleotídeo Único , Retroelementos/genética , Alinhamento de Sequência , Análise de Sequência de DNA
19.
Genome Biol ; 15(10): 488, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25348035

RESUMO

Mobile elements are major drivers in changing genomic architecture and can cause disease. The detection of mobile elements is hindered due to the low mappability of their highly repetitive sequences. We have developed an algorithm, called Mobster, to detect non-reference mobile element insertions in next generation sequencing data from both whole genome and whole exome studies. Mobster uses discordant read pairs and clipped reads in combination with consensus sequences of known active mobile elements. Mobster has a low false discovery rateand high recall rate for both L1 and Alu elements. Mobster is available at http://sourceforge.net/projects/mobster.


Assuntos
Algoritmos , Elementos de DNA Transponíveis , Análise de Sequência de DNA/métodos , Benchmarking , Genoma Humano , Humanos
20.
J Med Genet ; 51(11): 766-772, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25280750

RESUMO

BACKGROUND: Clinical evaluation of CNVs identified via techniques such as array comparative genome hybridisation (aCGH) involves the inspection of lists of known and unknown duplications and deletions with the goal of distinguishing pathogenic from benign CNVs. A key step in this process is the comparison of the individual's phenotypic abnormalities with those associated with Mendelian disorders of the genes affected by the CNV. However, because often there is not much known about these human genes, an additional source of data that could be used is model organism phenotype data. Currently, almost 6000 genes in mouse and zebrafish are, when knocked out, associated with a phenotype in the model organism, but no disease is known to be caused by mutations in the human ortholog. Yet, searching model organism databases and comparing model organism phenotypes with patient phenotypes for identifying novel disease genes and medical evaluation of CNVs is hindered by the difficulty in integrating phenotype information across species and the lack of appropriate software tools. METHODS: Here, we present an integrated ranking scheme based on phenotypic matching, degree of overlap with known benign or pathogenic CNVs and the haploinsufficiency score for the prioritisation of CNVs responsible for a patient's clinical findings. RESULTS: We show that this scheme leads to significant improvements compared with rankings that do not exploit phenotypic information. We provide a software tool called PhenogramViz, which supports phenotype-driven interpretation of aCGH findings based on multiple data sources, including the integrated cross-species phenotype ontology Uberpheno, in order to visualise gene-to-phenotype relations. CONCLUSIONS: Integrating and visualising cross-species phenotype information on the affected genes may help in routine diagnostics of CNVs.


Assuntos
Variações do Número de Cópias de DNA/genética , Variações do Número de Cópias de DNA/fisiologia , Doença/genética , Fenótipo , Animais , Biologia Computacional , Bases de Dados Genéticas , Humanos , Camundongos , Especificidade da Espécie , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA