Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Eur J Med Genet ; : 103776, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31562959

RESUMO

Chromoanagenesis represents an extreme form of genomic rearrangements involving multiple breaks occurring on a single or multiple chromosomes. It has been recently described in both acquired and rare constitutional genetic disorders. Constitutional chromoanagenesis events could lead to abnormal phenotypes including developmental delay and congenital anomalies, and have also been implicated in some specific syndromic disorders. We report the case of a girl presenting with growth retardation, hypotonia, microcephaly, dysmorphic features, coloboma, and hypoplastic corpus callosum. Karyotype showed a de novo structurally abnormal chromosome 14q31qter region. Molecular characterization using SNP-array revealed a complex unbalanced rearrangement in 14q31.1-q32.2, on the paternal chromosome 14, including thirteen interstitial deletions ranging from 33 kb to 1.56 Mb in size, with a total of 4.1 Mb in size, thus suggesting that a single event like chromoanagenesis occurred. To our knowledge, this is one of the first case of 14q distal deletion due to a germline chromoanagenesis. Genome sequencing allowed the characterization of 50 breakpoints, leading to interruption of 10 genes including YY1 which fit with the patient's phenotype. This precise genotyping of breaking junction allowed better definition of genotype-phenotype correlations.

2.
Am J Hum Genet ; 104(6): 1210-1222, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079897

RESUMO

We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities.

3.
J Assist Reprod Genet ; 36(5): 973-978, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30850901

RESUMO

BACKGROUND: The prevalence of chromosomal translocations is 1/500 in the general population. While in the vast majority of cases, carriers have a normal phenotype; they can present with difficulty conceiving due to the presence of a proportion of unbalanced gametes as a consequence of abnormal chromosomal segregation during meiosis. Since complex translocations involve three or more chromosomes, meiotic segregation leads to a greater number of possible combinations which effectively complicate both their study and therapeutic care. CASE PRESENTATION: We report on the case of a male carrier of a complex homogeneous double Robertsonian translocation: 44, XY, der(13;14)(q10;q10),der(21;22)(q10;q10). We studied his meiotic segregation by FISH on spermatozoa from the initial sample, as well as following discontinuous gradient centrifugation and after incubation in an hypo-osmotic solution. CONCLUSION: We report a method to study in a simple single-step manner the meiotic segregation of double Robertsonian translocations in spermatozoa. Further, our results suggest that reproductive prognosis of affected individuals may be markedly improved by HOST-based sperm selection (HBSS).

4.
Am J Hum Genet ; 104(4): 596-610, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879640

RESUMO

Mutations in several genes encoding components of the SWI/SNF chromatin remodeling complex cause neurodevelopmental disorders (NDDs). Here, we report on five individuals with mutations in SMARCD1; the individuals present with developmental delay, intellectual disability, hypotonia, feeding difficulties, and small hands and feet. Trio exome sequencing proved the mutations to be de novo in four of the five individuals. Mutations in other SWI/SNF components cause Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, or other syndromic and non-syndromic NDDs. Although the individuals presented here have dysmorphisms and some clinical overlap with these syndromes, they lack their typical facial dysmorphisms. To gain insight into the function of SMARCD1 in neurons, we investigated the Drosophila ortholog Bap60 in postmitotic memory-forming neurons of the adult Drosophila mushroom body (MB). Targeted knockdown of Bap60 in the MB of adult flies causes defects in long-term memory. Mushroom-body-specific transcriptome analysis revealed that Bap60 is required for context-dependent expression of genes involved in neuron function and development in juvenile flies when synaptic connections are actively being formed in response to experience. Taken together, we identify an NDD caused by SMARCD1 mutations and establish a role for the SMARCD1 ortholog Bap60 in the regulation of neurodevelopmental genes during a critical time window of juvenile adult brain development when neuronal circuits that are required for learning and memory are formed.

5.
J Med Genet ; 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287593

RESUMO

BACKGROUND: The clinical significance of 16p13.11 duplications remains controversial while frequently detected in patients with developmental delay (DD), intellectual deficiency (ID) or autism spectrum disorder (ASD). Previously reported patients were not or poorly characterised. The absence of consensual recommendations leads to interpretation discrepancy and makes genetic counselling challenging. This study aims to decipher the genotype-phenotype correlations to improve genetic counselling and patients' medical care. METHODS: We retrospectively analysed data from 16 013 patients referred to 12 genetic centers for DD, ID or ASD, and who had a chromosomal microarray analysis. The referring geneticists of patients for whom a 16p13.11 duplication was detected were asked to complete a questionnaire for detailed clinical and genetic data for the patients and their parents. RESULTS: Clinical features are mainly speech delay and learning disabilities followed by ASD. A significant risk of cardiovascular disease was noted. About 90% of the patients inherited the duplication from a parent. At least one out of four parents carrying the duplication displayed a similar phenotype to the propositus. Genotype-phenotype correlations show no impact of the size of the duplicated segment on the severity of the phenotype. However, NDE1 and miR-484 seem to have an essential role in the neurocognitive phenotype. CONCLUSION: Our study shows that 16p13.11 microduplications are likely pathogenic when detected in the context of DD/ID/ASD and supports an essential role of NDE1 and miR-484 in the neurocognitive phenotype. Moreover, it suggests the need for cardiac evaluation and follow-up and a large study to evaluate the aortic disease risk.

6.
J Clin Endocrinol Metab ; 103(7): 2436-2446, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29659920

RESUMO

Context: Silver-Russell syndrome (SRS) (mainly secondary to 11p15 molecular disruption) and Temple syndrome (TS) (secondary to 14q32.2 molecular disruption) are imprinting disorders with phenotypic (prenatal and postnatal growth retardation, early feeding difficulties) and molecular overlap. Objective: To describe the clinical overlap between SRS and TS and extensively study the molecular aspects of TS. Patients: We retrospectively collected data on 28 patients with disruption of the 14q32.2 imprinted region, identified in our center, and performed extensive molecular analysis. Results: Seventeen (60.7%) patients showed loss of methylation of the MEG3/DLK1 intergenic differentially methylated region by epimutation. Eight (28.6%) patients had maternal uniparental disomy of chromosome 14 and three (10.7%) had a paternal deletion in 14q32.2. Most patients (72.7%) had a Netchine-Harbison SRS clinical scoring system ≥4/6, and consistent with a clinical diagnosis of SRS. The mean age at puberty onset was 7.2 years in girls and 9.6 years in boys; 37.5% had premature pubarche. The body mass index of all patients increased before pubarche and/or the onset of puberty. Multilocus analysis identified multiple methylation defects in 58.8% of patients. We identified four potentially damaging genetic variants in genes encoding proteins involved in the establishment or maintenance of DNA methylation. Conclusions: Most patients with 14q32.2 disruption fulfill the criteria for a clinical diagnosis of SRS. These clinical data suggest similar management of patients with TS and SRS, with special attention to their young age at the onset of puberty and early increase of body mass index.

7.
J Med Genet ; 55(3): 205-213, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29223973

RESUMO

BACKGROUND: The 11p15 region contains two clusters of imprinted genes. Opposite genetic and epigenetic anomalies of this region result in two distinct growth disturbance syndromes: Beckwith-Wiedemann (BWS) and Silver-Russell syndromes (SRS). Cytogenetic rearrangements within this region represent less than 3% of SRS and BWS cases. Among these, 11p15 duplications were infrequently reported and interpretation of their pathogenic effects is complex. OBJECTIVES: To report cytogenetic and methylation analyses in a cohort of patients with SRS/BWS carrying 11p15 duplications and establish genotype/phenotype correlations. METHODS: From a cohort of patients with SRS/BWS with an abnormal methylation profile (using ASMM-RTQ-PCR), we used SNP-arrays to identify and map the 11p15 duplications. We report 19 new patients with SRS (n=9) and BWS (n=10) carrying de novo or familial 11p15 duplications, which completely or partially span either both telomeric and centromeric domains or only one domain. RESULTS: Large duplications involving one complete domain or both domains are associated with either SRS or BWS, depending on the parental origin of the duplication. Genotype-phenotype correlation studies of partial duplications within the telomeric domain demonstrate the prominent role of IGF2, rather than H19, in the control of growth. Furthermore, it highlights the role of CDKN1C within the centromeric domain and suggests that the expected overexpression of KCNQ1OT1 from the paternal allele (in partial paternal duplications, excluding CDKN1C) does not affect the expression of CDKN1C. CONCLUSIONS: The phenotype associated with 11p15 duplications depends on the size, genetic content, parental inheritance and imprinting status. Identification of these rare duplications is crucial for genetic counselling.

8.
Am J Med Genet A ; 176(1): 151-155, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29130637

RESUMO

A congenital myasthenia was suspected in two unrelated children with very similar phenotypes including several episodes of severe dyspnea. Both children had a 10q11.2 deletion revealed by Single Nucleotide Polymorphisms array or by Next Generation Sequencing analysis. The deletion was inherited from the healthy mother in the first case. These deletions unmasked a recessive mutation at the same locus in both cases, but in two different genes: CHAT and SLC18A3.


Assuntos
Colina O-Acetiltransferase/genética , Deleção Cromossômica , Cromossomos Humanos Par 10 , Genes Recessivos , Mutação , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Fenótipo , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Sequência de Aminoácidos , Feminino , Estudos de Associação Genética , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único
9.
Reprod Biomed Online ; 35(4): 372-378, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28711302

RESUMO

Chromosomal translocations and other balanced rearrangements, although usually associated with a normal phenotype, can lead to the transmission of an abnormal unbalanced genome to the offspring. Balanced and unbalanced spermatozoa, being indistinguishable, cannot be selected or deselected for prior to IVF and pre-implantation genetic diagnosis. Spermatozoa from 16 chromosomal rearrangement carriers were studied. After incubation in a hypo-osmotic solution (hypo-osmotic swelling test, or HOST), spermatozoa were fixed on microscope slides. The chromosomally balanced or unbalanced status corresponding to each observed class of flagellar conformation was evaluated through fluorescent in-situ hybridization (FISH). We show here a specific type of spermatozoa, with a distinct flagellar conformation that was associated with a balanced genetic content. HOST is a simple, low-cost and time-honoured procedure initially developed to distinguish immotile viable from non-viable spermatozoa. We demonstrate that it can also be used to identify genetically balanced spermatozoa in chromosomal rearrangement carriers, with a 96% decrease in the proportion of unbalanced spermatozoa after selection. This may potentially improve reproductive prognosis in affected couples if used prior to pre-implantation genetic diagnosis (PGD), and clinical utility and efficacy should be evaluated in further studies.


Assuntos
Triagem de Portadores Genéticos/métodos , Diagnóstico Pré-Implantação/métodos , Espermatozoides/citologia , Translocação Genética/genética , Segregação de Cromossomos , Feminino , Fertilização In Vitro , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Osmose , Motilidade Espermática , Cauda do Espermatozoide/ultraestrutura
10.
Nat Genet ; 49(4): 511-514, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250454

RESUMO

Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual.


Assuntos
Agenesia do Corpo Caloso/genética , Deficiências do Desenvolvimento/genética , Mutação/genética , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética , Anormalidades Múltiplas/genética , Encéfalo/patologia , Corpo Caloso/patologia , Receptor DCC , Família , Feminino , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Células-Tronco Neurais/patologia , Penetrância , Fenótipo
11.
Hum Genet ; 136(4): 463-479, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28283832

RESUMO

Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, and review additional data from 37 previously published patients with 1q43q44 microdeletions. We compare clinical data of patients with 1q43q44 microdeletions with those of patients with point mutations in HNRNPU and ZBTB18 to assess the contribution of each gene as well as the possibility of epistasis between genes. Our study demonstrates that AKT3 haploinsufficiency is the main driver for microcephaly, whereas HNRNPU alteration mostly drives epilepsy and determines the degree of intellectual disability. ZBTB18 deletions or mutations are associated with variable corpus callosum anomalies with an incomplete penetrance. ZBTB18 may also contribute to microcephaly and HNRNPU to thin corpus callosum, but with a lower penetrance. Co-deletion of contiguous genes has additive effects. Our results confirm and refine the complex genotype-phenotype correlations existing in the 1qter microdeletion syndrome and define more precisely the neurodevelopmental phenotypes associated with genetic alterations of AKT3, ZBTB18 and HNRNPU in humans.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 1 , Ribonucleoproteínas Nucleares Heterogêneas/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas Repressoras/genética , Humanos
12.
J Pediatr ; 185: 160-166.e1, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28284480

RESUMO

OBJECTIVE: To evaluate the role that chromosomal micro-rearrangements play in patients with both corpus callosum abnormality and intellectual disability, we analyzed copy number variations (CNVs) in patients with corpus callosum abnormality/intellectual disability STUDY DESIGN: We screened 149 patients with corpus callosum abnormality/intellectual disability using Illumina SNP arrays. RESULTS: In 20 patients (13%), we have identified at least 1 CNV that likely contributes to corpus callosum abnormality/intellectual disability phenotype. We confirmed that the most common rearrangement in corpus callosum abnormality/intellectual disability is inverted duplication with terminal deletion of the 8p chromosome (3.2%). In addition to the identification of known recurrent CNVs, such as deletions 6qter, 18q21 (including TCF4), 1q43q44, 17p13.3, 14q12, 3q13, 3p26, and 3q26 (including SOX2), our analysis allowed us to refine the 2 known critical regions associated with 8q21.1 deletion and 19p13.1 duplication relevant for corpus callosum abnormality; report a novel 10p12 deletion including ZEB1 recently implicated in corpus callosum abnormality with corneal dystrophy; and) report a novel pathogenic 7q36 duplication encompassing SHH. In addition, 66 variants of unknown significance were identified in 57 patients encompassed candidate genes. CONCLUSIONS: Our results confirm the relevance of using microarray analysis as first line test in patients with corpus callosum abnormality/intellectual disability.


Assuntos
Agenesia do Corpo Caloso/genética , Variações do Número de Cópias de DNA , Deficiência Intelectual/genética , Adolescente , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , Deleção Cromossômica , Duplicação Cromossômica , Cromossomos Humanos Par 10 , Cromossomos Humanos Par 19 , Cromossomos Humanos Par 3 , Cromossomos Humanos Par 7 , Cromossomos Humanos Par 8 , Feminino , Proteínas Hedgehog/genética , Humanos , Masculino , Análise em Microsséries , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Adulto Jovem , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
14.
Pediatr Blood Cancer ; 63(1): 71-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26375764

RESUMO

BACKGROUND: Germline non-polyalanine repeat expansion mutations in PHOX2B (PHOX2B NPARM) predispose to peripheral neuroblastic tumors (PNT), frequently in association with other neurocristopathies: Hirschsprung disease (HSCR) or congenital central hypoventilation syndrome (CCHS). Although PHOX2B polyalanine repeat expansions predispose to a low incidence of benign PNTs, the oncologic phenotype associated with PHOX2B NPARM is still not known in detail. METHODS: We analyzed prognostic factors, treatment toxicity, and outcome of patients with PNT and PHOX2B NPARM. RESULTS: Thirteen patients were identified, six of whom also had CCHS and/or HSCR, one also had late-onset hypoventilation with hypothalamic dysfunction (LO-CHS/HD), and six had no other neurocristopathy. Four tumours were "poorly differentiated," and nine were differentiated, including five ganglioneuromas, three ganglioneuroblastomas, and one differentiating neuroblastoma, hence illustrating that PHOX2B NPARM are predominantly associated with differentiating tumors. Nevertheless, three patients had stage 4 and one patient had stage 3 disease. Segmental chromosomal alterations, correlating with poor prognosis, were found in all the six tumors analyzed by array-comparative genomic hybridization. One patient died of tumor progression, one is on palliative care, one died of hypoventilation, and 10 patients are still alive, with median follow-up of 5 years. CONCLUSIONS: Based on histological phenotype, our series suggests that heterozygous PHOX2B NPARM do not fully preclude ganglion cell differentiation in tumors. However, this tumor predisposition syndrome may also be associated with poorly differentiated tumors with unfavorable genomic profiles and clinically aggressive behaviors. The intrafamilial variability and the unpredictable tumor prognosis should be considered in genetic counseling.


Assuntos
Proteínas de Homeodomínio/genética , Neuroblastoma/genética , Neoplasias do Sistema Nervoso Periférico/genética , Fatores de Transcrição/genética , Adulto , Causalidade , Criança , Pré-Escolar , Aberrações Cromossômicas , Expansão das Repetições de DNA , Ganglioneuroblastoma/genética , Ganglioneuroblastoma/patologia , Ganglioneuroma/patologia , Humanos , Doenças Hipotalâmicas/genética , Doenças Hipotalâmicas/patologia , Hipoventilação/congênito , Hipoventilação/genética , Hipoventilação/patologia , Lactente , Mutação , Neuroblastoma/patologia , Neuroblastoma/terapia , Hibridização de Ácido Nucleico , Neoplasias do Sistema Nervoso Periférico/patologia , Neoplasias do Sistema Nervoso Periférico/terapia , Fenótipo , Prognóstico , Apneia do Sono Tipo Central/genética , Apneia do Sono Tipo Central/patologia , Resultado do Tratamento
15.
Eur J Med Genet ; 58(6-7): 341-5, 2015 Jun-Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25917374

RESUMO

Xp21 continuous gene deletion syndrome is characterized by complex glycerol kinase deficiency (GK), adrenal hypoplasia congenital (NROB1), intellectual disability and/or Duchenne muscular dystrophy (DMD). The clinical features depend on the size of the deletion, as well as on the number and the nature of the encompassed genes. More than 100 male patients have been reported so far, while only a few cases of symptomatic female carriers have been described. We report here detailed clinical features and X chromosome inactivation analysis in two unrelated female patients with overlapping Xp21 deletions presenting with intellectual disability and inconstant muscular symptoms.


Assuntos
Insuficiência Adrenal/genética , Erros Inatos do Metabolismo dos Carboidratos/genética , Cromossomos Humanos X/genética , Deleção de Genes , Doenças Genéticas Ligadas ao Cromossomo X/genética , Glicerol Quinase/deficiência , Deficiência Intelectual/genética , Distrofia Muscular de Duchenne/genética , Insuficiência Adrenal/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Criança , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Glicerol Quinase/genética , Humanos , Hipoadrenocorticismo Familiar , Deficiência Intelectual/diagnóstico , Distrofia Muscular de Duchenne/diagnóstico , Síndrome , Adulto Jovem
16.
Reprod Biomed Online ; 30(3): 290-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25599825

RESUMO

While chromosomal translocations are usually associated with a normal phenotype, they can still cause male infertility as well as recurrent miscarriages and fetal malformations related to their transmission in an unbalanced state. The distinction between balanced and unbalanced spermatozoa on morphological criteria is still unfeasible. However, we previously showed that: i) spermatozoa with an unbalanced content have a higher rate of DNA fragmentation; and ii) that density gradient centrifugation partially separates balanced from unbalanced sperm cells. We hypothesized that a chromosomal imbalance could alter the fine spermatic nuclear architecture and consequently the condensation of DNA, thus modifying normal sperm density. Spermatic nuclear volumes in four translocation carriers were analyzed using confocal microscopy. Secondarily, FISH analysis was used to establish the segregation mode of each spermatozoon. We found the average spermatic nuclei size to be higher among unbalanced spermatozoa in all patients but one. All the unbalanced modes were associated with larger nuclei in two patients, while this was the case for the 3:1 mode only in the other two, suggesting an abnormal condensation. This could be the first step in elaborating a procedure to completely eliminate unbalanced spermatozoa from semen prior to in vitro fertilization.


Assuntos
Transtornos Cromossômicos/patologia , Heterozigoto , Espermatozoides/patologia , Translocação Genética , Aborto Espontâneo/etiologia , Adulto , Desequilíbrio Alélico , Tamanho do Núcleo Celular , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/metabolismo , Transtornos Cromossômicos/fisiopatologia , Segregação de Cromossomos , Características da Família , Feminino , Corantes Fluorescentes/química , França , Humanos , Imagem Tridimensional , Hibridização in Situ Fluorescente , Infertilidade Masculina/etiologia , Substâncias Intercalantes/química , Masculino , Microscopia Confocal , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA