Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 575(7783): 480-484, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31610544

RESUMO

The distribution of charge density in materials dictates their chemical bonding, electronic transport, and optical and mechanical properties. Indirectly measuring the charge density of bulk materials is possible through X-ray or electron diffraction techniques by fitting their structure factors1-3, but only if the sample is perfectly homogeneous within the area illuminated by the beam. Meanwhile, scanning tunnelling microscopy and atomic force microscopy enable us to see chemical bonds, but only on the surface4-6. It remains a challenge to resolve charge density in nanostructures and functional materials with imperfect crystalline structures-such as those with defects, interfaces or boundaries at which new physics emerges. Here we describe the development of a real-space imaging technique that can directly map the local charge density of crystalline materials with sub-ångström resolution, using scanning transmission electron microscopy alongside an angle-resolved pixellated fast-electron detector. Using this technique, we image the interfacial charge distribution and ferroelectric polarization in a SrTiO3/BiFeO3 heterojunction in four dimensions, and discover charge accumulation at the interface that is induced by the penetration of the polarization field of BiFeO3. We validate this finding through side-by-side comparison with density functional theory calculations. Our charge-density imaging method advances electron microscopy from detecting atoms to imaging electron distributions, providing a new way of studying local bonding in crystalline solids.

2.
Nano Lett ; 19(10): 6812-6818, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31508969

RESUMO

Ferroelectric heterostructures, with capability of storing data at ultrahigh densities, could act as the platform for next-generation memories. The development of new device paradigms has been hampered by the long-standing notion of inevitable ferroelectricity suppression under reduced dimensions. Despite recent experimental observation of stable polarized states in ferroelectric ultrathin films, the out-of-plane polarization components in these films are strongly attenuated compared to thicker films, implying a degradation of device performance in electronic miniaturization processes. Here, in a model system of BiFeO3/La0.7Sr0.3MnO3, we report observation of a dramatic out-of-plane polarization enhancement that occurs with decreasing film thickness. Our electron microscopy analysis coupled with phase-field simulations reveals a polarization-enhancement mechanism that is dominated by the accumulation of oxygen vacancies at interfacial layers. The results shed light on the interplay between polarization and defects in nanoscale ferroelectrics and suggest a route to enhance functionality in oxide devices.

3.
Adv Mater ; 31(36): e1902099, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31353633

RESUMO

Ferroelectric domain walls exhibit a number of new functionalities that are not present in their host material. One of these functional characteristics is electrical conductivity that may lead to future device applications. Although progress has been made, the intrinsic conductivity of BiFeO3 domain walls is still elusive. Here, the intrinsic conductivity of 71° and 109° domain walls is reported by probing the local conductance over a cross section of the BiFeO3 /TbScO3 (001) heterostructure. Through a combination of conductive atomic force microscopy, high-resolution electron energy loss spectroscopy, and phase-field simulations, it is found that the 71° domain wall has an inherently charged nature, while the 109° domain wall is close to neutral. Hence, the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls associated with bound-charge-induced bandgap lowering. Furthermore, the interaction of adjacent 71° domain walls and domain wall curvature leads to a variation of the charge distribution inside the walls, and causes a discontinuity of potential in the [110]p direction, which results in an alternative conductivity of the neighboring 71° domain walls, and a low conductivity of the 71° domain walls when measurement is taken from the film top surface.

4.
Nat Nanotechnol ; 13(12): 1191, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30291315

RESUMO

In the version of this Letter originally published, the right-hand arrow in Fig. 3b was incorrectly labelled; see correction note for details. Also, ref. 29 was incorrectly included in the reference list; it has now been removed.

5.
Nat Nanotechnol ; 13(12): 1132-1136, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30250247

RESUMO

Coupling between different degrees of freedom, that is, charge, spin, orbital and lattice, is responsible for emergent phenomena in complex oxide heterostrutures1,2. One example is the formation of a two-dimensional electron gas (2DEG) at the polar/non-polar LaAlO3/SrTiO3 (LAO/STO)3-7 interface. This is caused by the polar discontinuity and counteracts the electrostatic potential build-up across the LAO film3. The ferroelectric polarization at a ferroelectric/insulator interface can also give rise to a polar discontinuity8-10. Depending on the polarization orientation, either electrons or holes are transferred to the interface, to form either a 2DEG or two-dimensional hole gas (2DHG)11-13. While recent first-principles modelling predicts the formation of 2DEGs at the ferroelectric/insulator interfaces9,10,12-14, experimental evidence of a ferroelectrically induced interfacial 2DEG remains elusive. Here, we report the emergence of strongly anisotropic polarization-induced conductivity at a ferroelectric/insulator interface, which shows a strong dependence on the polarization orientation. By probing the local conductance and ferroelectric polarization over a cross-section of a BiFeO3-TbScO3 (BFO/TSO) (001) heterostructure, we demonstrate that this interface is conducting along the 109° domain stripes in BFO, whereas it is insulating in the direction perpendicular to these domain stripes. Electron energy-loss spectroscopy and theoretical modelling suggest that the anisotropy of the interfacial conduction is caused by an alternating polarization associated with the ferroelectric domains, producing either electron or hole doping of the BFO/TSO interface.

6.
Adv Mater ; 30(38): e1802737, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30084144

RESUMO

Domain walls (DWs) have become an essential component in nanodevices based on ferroic thin films. The domain configuration and DW stability, however, are strongly dependent on the boundary conditions of thin films, which make it difficult to create complex ordered patterns of DWs. Here, it is shown that novel domain structures, that are otherwise unfavorable under the natural boundary conditions, can be realized by utilizing engineered nanosized structural defects as building blocks for reconfiguring DW patterns. It is directly observed that an array of charged defects, which are located within a monolayer thickness, can be intentionally introduced by slightly changing substrate temperature during the growth of multiferroic BiFeO3 thin films. These defects are strongly coupled to the domain structures in the pretemperature-change portion of the BiFeO3 film and can effectively change the configuration of newly grown domains due to the interaction between the polarization and the defects. Thus, two types of domain patterns are integrated into a single film without breaking the DW periodicity. The potential use of these defects for building complex patterns of conductive DWs is also demonstrated.

7.
Phys Rev Lett ; 120(13): 137602, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694202

RESUMO

Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO_{3}. An array of charged NSNRs are produced in BiFeO_{3} thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

8.
ACS Appl Mater Interfaces ; 10(8): 7208-7213, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29457889

RESUMO

Rapid preparation utilizing assisted microwave heating permits significantly shorter preparation times for magnetocaloric compounds in the (Mn,Fe)2(P,Si) family, specifically samples of (Mn,Fe)2-δP0.5Si0.5 with starting compositions of δ = 0, 0.06, and 0.12. To fully understand the effects of processing and composition changes on structure and properties, these materials are characterized using synchrotron powder diffraction, neutron powder diffraction, electron microprobe analysis (EMPA), X-ray fluorescence (XRF), and magnetic measurements. The diffraction analysis reveals that increasing δ results in decreasing amounts of the common Heusler (Mn,Fe)3Si secondary phase. EMPA shows (Mn,Fe)2(P,Si) in all three samples to be Mn and P rich, whereas XRF demonstrates that the bulk material is Mn rich yet P deficient. Increasing δ brings the Mn/Fe and P/Si ratios closer to their starting values. Measurements of magnetic properties show an increase in saturation magnetization and ordering temperature with increasing δ, consistent with the increase in Fe and Si contents. Increasing δ also results in a decrease in thermal hysteresis and an increase in magnetic entropy change, the latter reaching values close to what have been previously reported on samples that take much longer to prepare.

9.
Adv Mater ; 29(30)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28585347

RESUMO

Tailoring and enhancing the functional properties of materials at reduced dimension is critical for continuous advancement of modern electronic devices. Here, the discovery of local surface induced giant spontaneous polarization in ultrathin BiFeO3 ferroelectric films is reported. Using aberration-corrected scanning transmission electron microscopy, it is found that the spontaneous polarization in a 2 nm-thick ultrathin BiFeO3 film is abnormally increased up to ≈90-100 µC cm-2 in the out-of-plane direction and a peculiar rumpled nanodomain structure with very large variation in c/a ratios, which is analogous to morphotropic phase boundaries (MPBs), is formed. By a combination of density functional theory and phase-field calculations, it is shown that it is the unique single atomic Bi2 O3-x layer at the surface that leads to the enhanced polarization and appearance of the MPB-like nanodomain structure. This finding clearly demonstrates a novel route to the enhanced functional properties in the material system with reduced dimension via engineering the surface boundary conditions.

10.
Phys Rev Lett ; 114(3): 037401, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25659021

RESUMO

Using polarization-resolved photoluminescence spectroscopy, we investigate the breaking of valley degeneracy by an out-of-plane magnetic field in back-gated monolayer MoSe2 devices. We observe a linear splitting of -0.22 meV/T between luminescence peak energies in σ+ and σ- emission for both neutral and charged excitons. The optical selection rules of monolayer MoSe2 couple the photon handedness to the exciton valley degree of freedom; so this splitting demonstrates valley degeneracy breaking. In addition, we find that the luminescence handedness can be controlled with a magnetic field to a degree that depends on the back-gate voltage. An applied magnetic field, therefore, provides effective strategies for control over the valley degree of freedom.

11.
Science ; 334(6058): 968-71, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22096196

RESUMO

The utility of ferroelectric materials stems from the ability to nucleate and move polarized domains using an electric field. To understand the mechanisms of polarization switching, structural characterization at the nanoscale is required. We used aberration-corrected transmission electron microscopy to follow the kinetics and dynamics of ferroelectric switching at millisecond temporal and subangstrom spatial resolution in an epitaxial bilayer of an antiferromagnetic ferroelectric (BiFeO(3)) on a ferromagnetic electrode (La(0.7)Sr(0.3)MnO(3)). We observed localized nucleation events at the electrode interface, domain wall pinning on point defects, and the formation of ferroelectric domains localized to the ferroelectric and ferromagnetic interface. These results show how defects and interfaces impede full ferroelectric switching of a thin film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA