Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
J Mol Cell Cardiol ; 131: 53-65, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31005484

RESUMO

AIMS: Atrial contractile dysfunction is associated with increased mortality in heart failure (HF). We have shown previously that a metabolic syndrome-based model of HFpEF and a model of hypertensive heart disease (HHD) have impaired left atrial (LA) function in vivo (rat). In this study we postulate, that left atrial cardiomyocyte (CM) and cardiac fibroblast (CF) paracrine interaction related to the inositol 1,4,5-trisphosphate signalling cascade is pivotal for the manifestation of atrial mechanical dysfunction in HF and that quantitative atrial remodeling is highly disease-dependent. METHODS AND RESULTS: Differential remodeling was observed in HHD and HFpEF as indicated by an increase of atrial size in vivo (HFpEF), unchanged fibrosis (HHD and HFpEF) and a decrease of CM size (HHD). Baseline contractile performance of rat CM in vitro was enhanced in HFpEF. Upon treatment with conditioned medium from their respective stretched CF (CM-SF), CM (at 21 weeks) of WT showed increased Ca2+ transient (CaT) amplitudes related to the paracrine activity of the inotrope endothelin (ET-1) and inositol 1,4,5-trisphosphate induced Ca2+ release. Concentration of ET-1 was increased in CM-SF and atrial tissue from WT as compared to HHD and HFpEF. In HHD, CM-SF had no relevant effect on CaT kinetics. However, in HFpEF, CM-SF increased diastolic Ca2+ and slowed Ca2+ removal, potentially contributing to an in-vivo decompensation. During disease progression (i.e. at 27 weeks), HFpEF displayed dysfunctional excitation-contraction-coupling (ECC) due to lower sarcoplasmic-reticulum Ca2+ content unrelated to CF-CM interaction or ET-1, but associated with enhanced nuclear [Ca2+]. In human patients, tissue ET-1 was not related to the presence of arterial hypertension or obesity. CONCLUSIONS: Atrial remodeling is a complex entity that is highly disease and stage dependent. The activity of fibrosis related to paracrine interaction (e.g. ET-1) might contribute to in vitro and in vivo atrial dysfunction. However, during later stages of disease, ECC is impaired unrelated to CF.

2.
Eur J Heart Fail ; 21(3): 272-285, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30714667

RESUMO

Fibrosis is a pivotal player in heart failure development and progression. Measurements of (markers of) fibrosis in tissue and blood may help to diagnose and risk stratify patients with heart failure, and its treatment may be effective in preventing heart failure and its progression. A lack of pathophysiological insights and uniform definitions has hampered the research in fibrosis and heart failure. The Translational Research Committee of the Heart Failure Association discussed several aspects of fibrosis in their workshop. Early insidious perturbations such as subclinical hypertension or inflammation may trigger first fibrotic events, while more dramatic triggers such as myocardial infarction and myocarditis give rise to full blown scar formation and ongoing fibrosis in diseased hearts. Aging itself is also associated with a cardiac phenotype that includes fibrosis. Fibrosis is an extremely heterogeneous phenomenon, as several stages of the fibrotic process exist, each with different fibrosis subtypes and a different composition of various cells and proteins - resulting in a very complex pathophysiology. As a result, detection of fibrosis, e.g. using current cardiac imaging modalities or plasma biomarkers, will detect only specific subforms of fibrosis, but cannot capture all aspects of the complex fibrotic process. Furthermore, several anti-fibrotic therapies are under investigation, but such therapies generally target aspecific aspects of the fibrotic process and suffer from a lack of precision. This review discusses the mechanisms and the caveats and proposes a roadmap for future research.

4.
Eur Heart J ; 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30295807

RESUMO

Acute heart failure (HF) and in particular, cardiogenic shock are associated with high morbidity and mortality. A therapeutic dilemma is that the use of positive inotropic agents, such as catecholamines or phosphodiesterase-inhibitors, is associated with increased mortality. Newer drugs, such as levosimendan or omecamtiv mecarbil, target sarcomeres to improve systolic function putatively without elevating intracellular Ca2+. Although meta-analyses of smaller trials suggested that levosimendan is associated with a better outcome than dobutamine, larger comparative trials failed to confirm this observation. For omecamtiv mecarbil, Phase II clinical trials suggest a favourable haemodynamic profile in patients with acute and chronic HF, and a Phase III morbidity/mortality trial in patients with chronic HF has recently begun. Here, we review the pathophysiological basis of systolic dysfunction in patients with HF and the mechanisms through which different inotropic agents improve cardiac function. Since adenosine triphosphate and reactive oxygen species production in mitochondria are intimately linked to the processes of excitation-contraction coupling, we also discuss the impact of inotropic agents on mitochondrial bioenergetics and redox regulation. Therefore, this position paper should help identify novel targets for treatments that could not only safely improve systolic and diastolic function acutely, but potentially also myocardial structure and function over a longer-term.

5.
J Vis Exp ; (137)2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30102264

RESUMO

In this article, we describe an optimized, Langendorff-based procedure for the isolation of single-cell atrial cardiomyocytes (ACMs) from a rat model of metabolic syndrome (MetS)-related heart failure with preserved ejection fraction (HFpEF). The prevalence of MetS-related HFpEF is rising, and atrial cardiomyopathies associated with atrial remodeling and atrial fibrillation are clinically highly relevant as atrial remodeling is an independent predictor of mortality. Studies with isolated single-cell cardiomyocytes are frequently used to corroborate and complement in vivo findings. Circulatory vessel rarefication and interstitial tissue fibrosis pose a potentially limiting factor for the successful single-cell isolation of ACMs from animal models of this disease. We have addressed this issue by employing a device capable of manually regulating the intraluminal pressure of cardiac cavities during the isolation procedure, substantially increasing the yield of morphologically and functionally intact ACMs. The acquired cells can be used in a variety of different experiments, such as cell culture and functional Calcium imaging (i.e., excitation-contraction-coupling). We provide the researcher with a step-by-step protocol, a list of optimized solutions, thorough instructions to prepare the necessary equipment, and a comprehensive troubleshooting guide. While the initial implementation of the procedure might be rather difficult, a successful adaptation will allow the reader to perform state-of-the-art ACM isolations in a rat model of MetS-related HFpEF for a broad spectrum of experiments.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Síndrome Metabólica/complicações , Miócitos Cardíacos/metabolismo , Volume Sistólico/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Ratos
6.
Cell Mol Life Sci ; 75(23): 4403-4416, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30062428

RESUMO

Heart failure (HF) manifestation and progression are driven by systemic activation of neuroendocrine signaling cascades, such as the renin-angiotensin aldosterone system (RAAS). Fibroblast growth factor 23 (FGF23), an endocrine hormone, is linked to HF and cardiovascular mortality. It is also a mediator of left-ventricular hypertrophy (LVH). In vivo, high circulating levels of FGF23 are associated with an altered systemic RAAS response. FGF23 is proposed to trigger pathological signaling mediated by Ca2+-regulated transcriptional pathways. In the present study, we investigated Ca2+-dependent signaling of FGF23 in ventricular cardiomyocytes and its association with angiotensin II (ATII). In neonatal rat ventricular myocytes (NRVMs), both ATII and FGF23 induced hypertrophy as observed by an increase in cell area and hypertrophic gene expression. Furthermore, FGF23 activates nuclear Ca2+-regulated CaMKII-HDAC4 pathway, similar to ATII. In addition to a global increase in cytoplasmic Ca2+, FGF23, like ATII, induced inositol 1, 4, 5-triphosphate (IP3)-induced Ca2+ release from the nucleoplasmic Ca2+ store, associated with cellular hypertrophy. Interestingly, ATII receptor antagonist, losartan, significantly attenuated FGF23-induced changes in Ca2+ homeostasis and cellular hypertrophy suggesting an involvement of ATII receptor-mediated signaling. In addition, application of FGF23 increased intracellular expression of ATII peptide and its secretion in NRVMs, confirming the participation of ATII. In conclusion, FGF23 and ATII share a common mechanism of IP3-nuclear Ca2+-dependent cardiomyocyte hypertrophy. FGF23-mediated cellular hypertrophy is associated with increased production and secretion of ATII by cardiomyocytes. These findings indicate a pathophysiological role of the cellular angiotensin system in FGF23-induced hypertrophy in ventricular cardiomyocytes.


Assuntos
Angiotensina II/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Cardiomegalia/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Angiotensina II/metabolismo , Animais , Animais Recém-Nascidos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/genética , Células Cultivadas , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Receptor Tipo 1 de Angiotensina/metabolismo
7.
Heart Rhythm ; 15(9): 1328-1336, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29803020

RESUMO

BACKGROUND: Arterial hypertension (HT) contributes to progression of atrial fibrillation (AF) via unknown mechanisms. OBJECTIVE: We aimed to characterize electrical and structural changes accounting for increased AF stability in a large animal model of rapid atrial pacing (RAP)-induced AF combined with desoxycorticosterone acetate (DOCA)-induced HT. METHODS: Eighteen pigs were instrumented with right atrial endocardial pacemaker leads and custom-made pacemakers to induce AF by continuous RAP (600 beats/min). DOCA pellets were subcutaneously implanted in a subgroup of 9 animals (AF+HT group); the other 9 animals served as controls (AF group). Final experiments included electrophysiology studies, endocardial electroanatomic mapping, and high-density mapping with epicardial multielectrode arrays. In addition, 3-dimensional computational modeling was performed. RESULTS: DOCA implantation led to secondary HT (median [interquartile range] aortic pressure 109.9 [100-137] mm Hg in AF+HT vs 82.2 [79-96] mm Hg in AF; P < .05), increased AF stability (55.6% vs 12.5% of animals with AF episodes lasting >1 hour; P < .05), concentric left ventricular hypertrophy, atrial dilatation (119 ± 31 cm2 in AF+HT vs 78 ± 23 cm2 in AF; P < .05), and fibrosis. Collagen accumulation in the AF+HT group was mainly found in non-intermyocyte areas (1.62 ± 0.38 cm3 in AF+HT vs 0.96 ± 0.3 cm3 in AF; P < .05). Left and right atrial effective refractory periods, action potential durations, endo- and epicardial conduction velocities, and measures of AF complexity were comparable between the 2 groups. A 3-dimensional computational model confirmed an increase in AF stability observed in the in vivo experiments associated with increased atrial size. CONCLUSION: In this model of secondary HT, higher AF stability after 2 weeks of RAP is mainly driven by atrial dilatation.

8.
Artigo em Inglês | MEDLINE | ID: mdl-29663449

RESUMO

OBJECTIVE: Application of therapeutic mild hypothermia in patients after resuscitation, often accompanied by myocardial infarction, cardiogenic shock, and systemic inflammation may impact on cardiac rhythm. We therefore tested susceptibility to atrial arrhythmias during hyperthermia (HT, 40.5°C), normothermia (NT, 38.0°C), and mild hypothermia (MH, 33.0°C). METHODS: Nine healthy, anesthetized closed-chest landrace pigs were instrumented with a quadripolar stimulation catheter in the high right atrium and a decapolar catheter in the coronary sinus. Twelve-lead surface electrograms were recorded and core body temperature was altered to HT, NT, and MH using external warming or intravascular cooling. Repetitive measurements of effective atrial refractory period (AERP), atrial fibrillation (AF) inducibility, and electrocardiogram (ECG) parameters at different heart rates were performed. RESULTS: During MH, AERP was significantly longer while the inducibility of AF was significantly higher compared to NT and HT (median [range]: HT 18 (0, 80)%; NT 25 (0, 80)%; MH 68 (0, 100)%; P < 0.05 MH vs NT+HT). Mean AF duration did not differ between groups. Arterial potassium levels decreased with falling temperatures (HT: 4.2 ± 0.1 mmol/L; NT: 4.0 ± 0.2 mmol/L; MH: 3.5 ± 0.1 mmol/L; P < 0.001). Surface ECGs during MH showed reduced spontaneous heart rate (HT: 99 ± 13 beats/min; NT: 87 ± 15 beats/min; MH: 66 ± 10 beats/min; P < 0.05), increased PQ, stim-Q, and QT intervals (P < 0.01) but no change in QRS duration or time from peak to end of the T wave interval. CONCLUSION: Our data imply that MH represents an arrhythmic substrate rendering the atria more susceptible to AF although conduction times as well as refractory periods are increased. Further investigations on potential electrophysiological limits of therapeutic cooling in patients are required.

10.
PLoS Genet ; 14(1): e1007171, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29320510

RESUMO

Adipose tissue lipolysis occurs during the development of heart failure as a consequence of chronic adrenergic stimulation. However, the impact of enhanced adipose triacylglycerol hydrolysis mediated by adipose triglyceride lipase (ATGL) on cardiac function is unclear. To investigate the role of adipose tissue lipolysis during heart failure, we generated mice with tissue-specific deletion of ATGL (atATGL-KO). atATGL-KO mice were subjected to transverse aortic constriction (TAC) to induce pressure-mediated cardiac failure. The cardiac mouse lipidome and the human plasma lipidome from healthy controls (n = 10) and patients with systolic heart failure (HFrEF, n = 13) were analyzed by MS-based shotgun lipidomics. TAC-induced increases in left ventricular mass (LVM) and diastolic LV inner diameter were significantly attenuated in atATGL-KO mice compared to wild type (wt) -mice. More importantly, atATGL-KO mice were protected against TAC-induced systolic LV failure. Perturbation of lipolysis in the adipose tissue of atATGL-KO mice resulted in the prevention of the major cardiac lipidome changes observed after TAC in wt-mice. Profound changes occurred in the lipid class of phosphatidylethanolamines (PE) in which multiple PE-species were markedly induced in failing wt-hearts, which was attenuated in atATGL-KO hearts. Moreover, selected heart failure-induced PE species in mouse hearts were also induced in plasma samples from patients with chronic heart failure. TAC-induced cardiac PE induction resulted in decreased PC/ PE-species ratios associated with increased apoptotic marker expression in failing wt-hearts, a process absent in atATGL-KO hearts. Perturbation of adipose tissue lipolysis by ATGL-deficiency ameliorated pressure-induced heart failure and the potentially deleterious cardiac lipidome changes that accompany this pathological process, namely the induction of specific PE species. Non-cardiac ATGL-mediated modulation of the cardiac lipidome may play an important role in the pathogenesis of chronic heart failure.


Assuntos
Tecido Adiposo/metabolismo , Insuficiência Cardíaca/etiologia , Hipertensão/complicações , Lipase/fisiologia , Metabolismo dos Lipídeos/genética , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/etiologia , Animais , Estudos de Casos e Controles , Células Cultivadas , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Lipase/genética , Lipase/metabolismo , Masculino , Metaboloma/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Remodelação Ventricular
11.
J Mol Cell Cardiol ; 115: 10-19, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29289652

RESUMO

Heart failure (HF) with preserved ejection fraction (HFpEF) is present in about 50% of HF patients. Atrial remodeling is common in HFpEF and associated with increased mortality. We postulate that atrial remodeling is associated with atrial dysfunction in vivo related to alterations in cardiomyocyte Calcium (Ca) signaling and remodeling. We examined atrial function in vivo and Ca transients (CaT) (Fluo4-AM, field stim) in atrial cardiomyocytes of ZSF-1 rats without (Ln; lean hypertensive) and with metabolic syndrome (Ob; obese, hypertensive, diabetic) and HFpEF. RESULTS: At 21weeks Ln showed an increased left ventricular (LV) mass and left ventricular end-diastolic pressure (LVEDP), but unchanged left atrial (LA) size and preserved atrial ejection fraction vs. wild-type (WT). CaT amplitude in atrial cardiomyocytes was increased in Ln (2.9±0.2 vs. 2.3±0.2F/F0 in WT; n=22 cells/group; p<0.05). Studying subcellular Ca release in more detail, we found that local central cytosolic CaT amplitude was increased, while subsarcolemmal CaT amplitudes remained unchanged. Moreover, Sarcoplasmic reticulum (SR) Ca content (caffeine) was preserved while Ca spark frequency and tetracaine-dependent SR Ca leak were significantly increased in Ln. Ob mice developed a HFpEF phenotype in vivo, LA area was significantly increased and atrial in vivo function was impaired, despite increased atrial CaT amplitudes in vitro (2.8±0.2; p<0.05 vs. WT). Ob cells showed alterations of the tubular network possibly contributing to the observed phenotype. CaT kinetics as well as SR Ca in Ob were not significantly different from WT, but SR Ca leak remained increased. Angiotensin II (Ang II) reduced in vitro cytosolic CaT amplitudes and let to active nuclear Ca release in Ob but not in Ln or WT. SUMMARY: In hypertensive ZSF-1 rats, a possibly compensatory increase of cytosolic CaT amplitude and increased SR Ca leak precede atrial remodeling and HFpEF. Atrial remodeling in ZSF-1 HFpEF is associated with an altered tubular network in-vitro and atrial contractile dysfunction in vivo, indicating insufficient compensation. Atrial cardiomyocyte dysfunction in vitro is induced by the addition of angiotensin II.

14.
Europace ; 19(4): 544-551, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28431065

RESUMO

Aims: Paroxysmal atrial fibrillation (PAF) is often asymptomatic but nonetheless harmful. We evaluated the performance of disease-related blood biomarkers and CHA2DS2-VASc score to discriminate for PAF in patients with continuous rhythm monitoring. Methods and Results: Clinical data and blood samples were obtained from patients with dual-chamber pacemakers selected according to the absence (no_AHRE) or presence of Atrial High-Rate Episodes (AHRE) >6 min in recent device history (case-control approach). We included 93 patients (n = 49 AHRE, n = 44 no_AHRE). In a subgroup with high AHRE burden and confirmed PAF 15 biomarkers were evaluated (n = 19 AHRE-AF vs. n = 20 no_AHRE). Significantly regulated biomarkers were then tested in all patients to distinguish no_AHRE from AHRE (receiver operating characteristics analysis). Hsp27, TGFß1, cystatin C, matrix metalloproteinases MMP-2,-3,-9, albumin, and serum uric acid were not altered in the subgroup. Tissue inhibitors of metalloproteinases (TIMP) -1,-2,-4; NT-proANP, NT-proBNP, IL-6 and serum amyloid protein A were significantly different in AHRE vs. no_AHRE (subgroup and whole cohort), with best discriminatory performance for TIMP-4. Biomarkers performed better than CHADS2-VASc for AHRE discrimination. Intracardial electrograms and medical history from seven AHRE patients suggested atrial tachycardia and not AF (AHRE-AT). Four of the most relevant regulated biomarkers (TIMP-4, TIMP-2, SAA, NT-proBNP) behaved similarly in AHRE-AT and AHRE-AF. NT-proBNP >150 pg/mL indicated an odds ratio of 12.9 for AHRE. Combining two biomarkers significantly improved discrimination of AHRE. Conclusion: TIMP-4, NT-proANP, NT-proBNP were strongest associated with PAF and AHRE. The discriminatory performance of CHADS2-VASc for PAF was increased by addition of selected biomarkers.


Assuntos
Fibrilação Atrial/diagnóstico , Fibrilação Atrial/epidemiologia , Fator Natriurético Atrial/sangue , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/epidemiologia , Inibidores Teciduais de Metaloproteinases/sangue , Idoso , Idoso de 80 Anos ou mais , Fibrilação Atrial/sangue , Biomarcadores/sangue , Causalidade , Comorbidade , Eletrocardiografia/estatística & dados numéricos , Feminino , Alemanha/epidemiologia , Humanos , Incidência , Interleucina-6/sangue , Masculino , Reprodutibilidade dos Testes , Medição de Risco/métodos , Sensibilidade e Especificidade , Proteína Amiloide A Sérica/análise , Acidente Vascular Cerebral/sangue
15.
Eur J Heart Fail ; 18(8): 987-97, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27135883

RESUMO

AIMS: Heart failure with preserved ejection fraction (HFpEF) is increasingly common, but the underlying cellular mechanisms are not well understood. We investigated cardiomyocyte function and the role of SEA0400, an Na(+) /Ca(2+) exchanger (NCX) inhibitor in a rat model of chronic kidney disease (CKD) with HFpEF. METHODS AND RESULTS: Male Wistar rats were subjected to subtotal nephrectomy (NXT) or sham operation (Sham). After 8 and 24 weeks, in vivo (haemodynamics, echocardiography) and in vitro function (LV cardiomyocyte cell shortening (CS), and Ca(2+) transients (CaT)) were determined without and with SEA0400. In a subgroup of rats, SEA0400 or vehicle was given p.o. (1 mg/kg b.w.) between week 8 and 24. NXT resulted in stable compensated CKD and HFpEF [hypertrophied left ventricle, prolonged LV isovolumetric relaxation constant TAU (IVRc TAU), elevated end diastolic pressure (EDP), increased lung weight (pulmonary congestion), and preserved LV systolic function (EF, dP/dt)]. In NXT cardiomyocytes, the amplitude of CS and CaT were unchanged but relaxation and CaT decay were progressively prolonged at 8 and 24 weeks vs. Sham, individually correlating with diastolic dysfunction in vivo. NCX forward mode activity (caffeine response) was progressively reduced, while NCX protein expression was up-regulated, suggesting increased NCX reverse mode activity in NXT. SEA0400 acutely improved relaxation in NXT in vivo and in cardiomyocytes and improved cardiac remodelling and diastolic function when given chronically. CONCLUSIONS: This model of renal HFpEF is associated with slowed relaxation of LV cardiomyocytes. Treatment with SEA0400 improved cardiomyocyte function, remodelling, and HFpEF.


Assuntos
Compostos de Anilina/farmacologia , Insuficiência Cardíaca/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Éteres Fenílicos/farmacologia , Insuficiência Renal Crônica/fisiopatologia , Trocador de Sódio e Cálcio/antagonistas & inibidores , Volume Sistólico , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Ecocardiografia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/complicações , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ratos , Ratos Wistar , Insuficiência Renal Crônica/complicações
16.
J Mol Cell Cardiol ; 97: 36-43, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27106803

RESUMO

AMP-activated protein kinase (Ampk) regulates myocardial energy metabolism and plays a crucial role in the response to cell stress. In the failing heart, an isoform shift of the predominant Ampkα2 to the Ampkα1 was observed. The present study explored possible isoform specific effects of Ampkα1 in cardiomyocytes. To this end, experiments were performed in HL-1 cardiomyocytes, as well as in Ampkα1-deficient and corresponding wild-type mice and mice following AAV9-mediated cardiac overexpression of constitutively active Ampkα1. As a result, in HL-1 cardiomyocytes, overexpression of constitutively active Ampkα1 increased the phosphorylation of Pkcζ. Constitutively active Ampkα1 further increased AP-1-dependent transcriptional activity and mRNA expression of the AP-1 target genes c-Fos, Il6 and Ncx1, effects blunted by Pkcζ silencing. In HL-1 cardiomyocytes, angiotensin-II activated AP-1, an effect blunted by silencing of Ampkα1 and Pkcζ, but not of Ampkα2. In wild-type mice, angiotensin-II infusion increased cardiac Ampkα1 and cardiac Pkcζ protein levels, as well as c-Fos, Il6 and Ncx1 mRNA expression, effects blunted in Ampkα1-deficient mice. Pressure overload by transverse aortic constriction (TAC) similarly increased cardiac Ampkα1 and Pkcζ abundance as well as c-Fos, Il6 and Ncx1 mRNA expression, effects again blunted in Ampkα1-deficient mice. AAV9-mediated cardiac overexpression of constitutively active Ampkα1 increased Pkcζ protein abundance and the mRNA expression of c-Fos, Il6 and Ncx1 in cardiac tissue. In conclusion, Ampkα1 promotes myocardial AP-1 activation in a Pkcζ-dependent manner and thus contributes to cardiac stress signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Miócitos Cardíacos/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Dependovirus/genética , Expressão Gênica , Vetores Genéticos/genética , Camundongos , Camundongos Knockout , Isoformas de Proteínas , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais , Transdução Genética
19.
J Appl Physiol (1985) ; 119(10): 1233-42, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26183480

RESUMO

Left ventricular hypertrophy (LVH) is the most common myocardial structural abnormality associated with heart failure with preserved ejection fraction (HFpEF). LVH is driven by neurohumoral activation, increased mechanical load, and cytokines associated with arterial hypertension, chronic kidney disease, diabetes, and other comorbidities. Here we discuss the experimental and clinical evidence that links LVH to diastolic dysfunction and qualifies LVH as one diagnostic marker for HFpEF. Mechanisms leading to diastolic dysfunction in LVH are incompletely understood, but may include extracellular matrix changes, vascular dysfunction, as well as altered cardiomyocyte mechano-elastical properties. Beating cardiomyocytes from HFpEF patients have not yet been studied, but we and others have shown increased Ca(2+) turnover and impaired relaxation in cardiomyocytes from hypertrophied hearts. Structural myocardial remodeling can lead to heterogeneity in regional myocardial contractile function, which contributes to diastolic dysfunction in HFpEF. In the clinical setting of patients with compound comorbidities, diastolic dysfunction may occur independently of LVH. This may be one explanation why current approaches to reduce LVH have not been effective to improve symptoms and prognosis in HFpEF. Exercise training, on the other hand, in clinical trials improved exercise tolerance and diastolic function, but did not reduce LVH. Thus current clinical evidence does not support regression of LVH as a surrogate marker for (short-term) improvement of HFpEF.


Assuntos
Insuficiência Cardíaca/patologia , Hipertrofia Ventricular Esquerda/patologia , Miocárdio/patologia , Volume Sistólico/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA