Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 142(10): 3009-3027, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504254

RESUMO

N-methyl d-aspartate receptors are ligand-gated ionotropic receptors mediating a slow, calcium-permeable component of excitatory synaptic transmission in the CNS. Variants in genes encoding NMDAR subunits have been associated with a spectrum of neurodevelopmental disorders. Here we report six novel GRIN2D variants and one previously-described disease-associated GRIN2D variant in two patients with developmental and epileptic encephalopathy. GRIN2D encodes for the GluN2D subunit protein; the GluN2D amino acids affected by the variants in this report are located in the pre-M1 helix, transmembrane domain M3, and the intracellular carboxyl terminal domain. Functional analysis in vitro reveals that all six variants decreased receptor surface expression, which may underline some shared clinical symptoms. In addition the GluN2D(Leu670Phe), (Ala675Thr) and (Ala678Asp) substitutions confer significantly enhanced agonist potency, and/or increased channel open probability, while the GluN2D(Ser573Phe), (Ser1271Phe) and (Arg1313Trp) substitutions result in a mild increase of agonist potency, reduced sensitivity to endogenous protons, and decreased channel open probability. The GluN2D(Ser573Phe), (Ala675Thr), and (Ala678Asp) substitutions significantly decrease current amplitude, consistent with reduced surface expression. The GluN2D(Leu670Phe) variant slows current response deactivation time course and increased charge transfer. GluN2D(Ala678Asp) transfection significantly decreased cell viability of rat cultured cortical neurons. In addition, we evaluated a set of FDA-approved NMDAR channel blockers to rescue functional changes of mutant receptors. This work suggests the complexity of the pathological mechanisms of GRIN2D-mediated developmental and epileptic encephalopathy, as well as the potential benefit of precision medicine.

2.
Am J Hum Genet ; 104(6): 1210-1222, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31079897

RESUMO

We delineate a KMT2E-related neurodevelopmental disorder on the basis of 38 individuals in 36 families. This study includes 31 distinct heterozygous variants in KMT2E (28 ascertained from Matchmaker Exchange and three previously reported), and four individuals with chromosome 7q22.2-22.23 microdeletions encompassing KMT2E (one previously reported). Almost all variants occurred de novo, and most were truncating. Most affected individuals with protein-truncating variants presented with mild intellectual disability. One-quarter of individuals met criteria for autism. Additional common features include macrocephaly, hypotonia, functional gastrointestinal abnormalities, and a subtle facial gestalt. Epilepsy was present in about one-fifth of individuals with truncating variants and was responsive to treatment with anti-epileptic medications in almost all. More than 70% of the individuals were male, and expressivity was variable by sex; epilepsy was more common in females and autism more common in males. The four individuals with microdeletions encompassing KMT2E generally presented similarly to those with truncating variants, but the degree of developmental delay was greater. The group of four individuals with missense variants in KMT2E presented with the most severe developmental delays. Epilepsy was present in all individuals with missense variants, often manifesting as treatment-resistant infantile epileptic encephalopathy. Microcephaly was also common in this group. Haploinsufficiency versus gain-of-function or dominant-negative effects specific to these missense variants in KMT2E might explain this divergence in phenotype, but requires independent validation. Disruptive variants in KMT2E are an under-recognized cause of neurodevelopmental abnormalities.

3.
Am J Hum Genet ; 104(6): 1060-1072, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31104773

RESUMO

The developmental and epileptic encephalopathies (DEEs) are heterogeneous disorders with a strong genetic contribution, but the underlying genetic etiology remains unknown in a significant proportion of individuals. To explore whether statistical support for genetic etiologies can be generated on the basis of phenotypic features, we analyzed whole-exome sequencing data and phenotypic similarities by using Human Phenotype Ontology (HPO) in 314 individuals with DEEs. We identified a de novo c.508C>T (p.Arg170Trp) variant in AP2M1 in two individuals with a phenotypic similarity that was higher than expected by chance (p = 0.003) and a phenotype related to epilepsy with myoclonic-atonic seizures. We subsequently found the same de novo variant in two individuals with neurodevelopmental disorders and generalized epilepsy in a cohort of 2,310 individuals who underwent diagnostic whole-exome sequencing. AP2M1 encodes the µ-subunit of the adaptor protein complex 2 (AP-2), which is involved in clathrin-mediated endocytosis (CME) and synaptic vesicle recycling. Modeling of protein dynamics indicated that the p.Arg170Trp variant impairs the conformational activation and thermodynamic entropy of the AP-2 complex. Functional complementation of both the µ-subunit carrying the p.Arg170Trp variant in human cells and astrocytes derived from AP-2µ conditional knockout mice revealed a significant impairment of CME of transferrin. In contrast, stability, expression levels, membrane recruitment, and localization were not impaired, suggesting a functional alteration of the AP-2 complex as the underlying disease mechanism. We establish a recurrent pathogenic variant in AP2M1 as a cause of DEEs with distinct phenotypic features, and we implicate dysfunction of the early steps of endocytosis as a disease mechanism in epilepsy.

5.
Nat Commun ; 10(1): 708, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755616

RESUMO

Aminoacyl tRNA synthetases (ARSs) link specific amino acids with their cognate transfer RNAs in a critical early step of protein translation. Mutations in ARSs have emerged as a cause of recessive, often complex neurological disease traits. Here we report an allelic series consisting of seven novel and two previously reported biallelic variants in valyl-tRNA synthetase (VARS) in ten patients with a developmental encephalopathy with microcephaly, often associated with early-onset epilepsy. In silico, in vitro, and yeast complementation assays demonstrate that the underlying pathomechanism of these mutations is most likely a loss of protein function. Zebrafish modeling accurately recapitulated some of the key neurological disease traits. These results provide both genetic and biological insights into neurodevelopmental disease and pave the way for further in-depth research on ARS related recessive disorders and precision therapies.


Assuntos
Encefalopatias/genética , Microcefalia/genética , Valina-tRNA Ligase/genética , Alelos , Animais , Encefalopatias/enzimologia , Encefalopatias/patologia , Linhagem Celular , Modelos Animais de Doenças , Epilepsia/enzimologia , Epilepsia/genética , Epilepsia/patologia , Feminino , Fibroblastos , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Humanos , Mutação com Perda de Função , Masculino , Microcefalia/enzimologia , Microcefalia/patologia , Modelos Moleculares , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Prosencéfalo/patologia , Peixe-Zebra
6.
Neurology ; 92(11): e1238-e1249, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30737342

RESUMO

OBJECTIVE: The aim of this study was to expand the spectrum of epilepsy syndromes related to STX1B, encoding the presynaptic protein syntaxin-1B, and establish genotype-phenotype correlations by identifying further disease-related variants. METHODS: We used next-generation sequencing in the framework of research projects and diagnostic testing. Clinical data and EEGs were reviewed, including already published cases. To estimate the pathogenicity of the variants, we used established and newly developed in silico prediction tools. RESULTS: We describe 17 new variants in STX1B, which are distributed across the whole gene. We discerned 4 different phenotypic groups across the newly identified and previously published patients (49 patients in 23 families): (1) 6 sporadic patients or families (31 affected individuals) with febrile and afebrile seizures with a benign course, generally good drug response, normal development, and without permanent neurologic deficits; (2) 2 patients with genetic generalized epilepsy without febrile seizures and cognitive deficits; (3) 13 patients or families with intractable seizures, developmental regression after seizure onset and additional neuropsychiatric symptoms; (4) 2 patients with focal epilepsy. More often, we found loss-of-function mutations in benign syndromes, whereas missense variants in the SNARE motif of syntaxin-1B were associated with more severe phenotypes. CONCLUSION: These data expand the genetic and phenotypic spectrum of STX1B-related epilepsies to a diverse range of epilepsies that span the International League Against Epilepsy classification. Variants in STX1B are protean and contribute to many different epilepsy phenotypes, similar to SCN1A, the most important gene associated with fever-associated epilepsies.

7.
Brain ; 142(2): 376-390, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615093

RESUMO

Ion channel mutations can cause distinct neuropsychiatric diseases. We first studied the biophysical and neurophysiological consequences of four mutations in the human Na+ channel gene SCN8A causing either mild (E1483K) or severe epilepsy (R1872W), or intellectual disability and autism without epilepsy (R1620L, A1622D). Only combined electrophysiological recordings of transfected wild-type or mutant channels in both neuroblastoma cells and primary cultured neurons revealed clear genotype-phenotype correlations. The E1483K mutation causing mild epilepsy showed no significant biophysical changes, whereas the R1872W mutation causing severe epilepsy induced clear gain-of-function biophysical changes in neuroblastoma cells. However, both mutations increased neuronal firing in primary neuronal cultures. In contrast, the R1620L mutation associated with intellectual disability and autism-but not epilepsy-reduced Na+ current density in neuroblastoma cells and expectedly decreased neuronal firing. Interestingly, for the fourth mutation, A1622D, causing severe intellectual disability and autism without epilepsy, we observed a dramatic slowing of fast inactivation in neuroblastoma cells, which induced a depolarization block in neurons with a reduction of neuronal firing. This latter finding was corroborated by computational modelling. In a second series of experiments, we recorded three more mutations (G1475R, M1760I, G964R, causing intermediate or severe epilepsy, or intellectual disability without epilepsy, respectively) that revealed similar results confirming clear genotype-phenotype relationships. We found intermediate or severe gain-of-function biophysical changes and increases in neuronal firing for the two epilepsy-causing mutations and decreased firing for the loss-of-function mutation causing intellectual disability. We conclude that studies in neurons are crucial to understand disease mechanisms, which here indicate that increased or decreased neuronal firing is responsible for distinct clinical phenotypes.


Assuntos
Epilepsia/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/fisiologia , Animais , Células Cultivadas , Humanos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos
8.
Neurology ; 91(22): e2078-e2088, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30413629

RESUMO

OBJECTIVE: To characterize the neurologic phenotypes associated with COL4A1/2 mutations and to seek genotype-phenotype correlation. METHODS: We analyzed clinical, EEG, and neuroimaging data of 44 new and 55 previously reported patients with COL4A1/COL4A2 mutations. RESULTS: Childhood-onset focal seizures, frequently complicated by status epilepticus and resistance to antiepileptic drugs, was the most common phenotype. EEG typically showed focal epileptiform discharges in the context of other abnormalities, including generalized sharp waves or slowing. In 46.4% of new patients with focal seizures, porencephalic cysts on brain MRI colocalized with the area of the focal epileptiform discharges. In patients with porencephalic cysts, brain MRI frequently also showed extensive white matter abnormalities, consistent with the finding of diffuse cerebral disturbance on EEG. Notably, we also identified a subgroup of patients with epilepsy as their main clinical feature, in which brain MRI showed nonspecific findings, in particular periventricular leukoencephalopathy and ventricular asymmetry. Analysis of 15 pedigrees suggested a worsening of the severity of clinical phenotype in succeeding generations, particularly when maternally inherited. Mutations associated with epilepsy were spread across COL4A1 and a clear genotype-phenotype correlation did not emerge. CONCLUSION: COL4A1/COL4A2 mutations typically cause a severe neurologic condition and a broader spectrum of milder phenotypes, in which epilepsy is the predominant feature. Early identification of patients carrying COL4A1/COL4A2 mutations may have important clinical consequences, while for research efforts, omission from large-scale epilepsy sequencing studies of individuals with abnormalities on brain MRI may generate misleading estimates of the genetic contribution to the epilepsies overall.

10.
Brain ; 141(11): 3160-3178, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351409

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels control neuronal excitability and their dysfunction has been linked to epileptogenesis but few individuals with neurological disorders related to variants altering HCN channels have been reported so far. In 2014, we described five individuals with epileptic encephalopathy due to de novo HCN1 variants. To delineate HCN1-related disorders and investigate genotype-phenotype correlations further, we assembled a cohort of 33 unpublished patients with novel pathogenic or likely pathogenic variants: 19 probands carrying 14 different de novo mutations and four families with dominantly inherited variants segregating with epilepsy in 14 individuals, but not penetrant in six additional individuals. Sporadic patients had epilepsy with median onset at age 7 months and in 36% the first seizure occurred during a febrile illness. Overall, considering familial and sporadic patients, the predominant phenotypes were mild, including genetic generalized epilepsies and genetic epilepsy with febrile seizures plus (GEFS+) spectrum. About 20% manifested neonatal/infantile onset otherwise unclassified epileptic encephalopathy. The study also included eight patients with variants of unknown significance: one adopted patient had two HCN1 variants, four probands had intellectual disability without seizures, and three individuals had missense variants inherited from an asymptomatic parent. Of the 18 novel pathogenic missense variants identified, 12 were associated with severe phenotypes and clustered within or close to transmembrane domains, while variants segregating with milder phenotypes were located outside transmembrane domains, in the intracellular N- and C-terminal parts of the channel. Five recurrent variants were associated with similar phenotypes. Using whole-cell patch-clamp, we showed that the impact of 12 selected variants ranged from complete loss-of-function to significant shifts in activation kinetics and/or voltage dependence. Functional analysis of three different substitutions altering Gly391 revealed that these variants had different consequences on channel biophysical properties. The Gly391Asp variant, associated with the most severe, neonatal phenotype, also had the most severe impact on channel function. Molecular dynamics simulation on channel structure showed that homotetramers were not conducting ions because the permeation path was blocked by cation(s) strongly complexed to the Asp residue, whereas heterotetramers showed an instantaneous current component possibly linked to deformation of the channel pore. In conclusion, our results considerably expand the clinical spectrum related to HCN1 variants to include common generalized epilepsy phenotypes and further illustrate how HCN1 has a pivotal function in brain development and control of neuronal excitability.

11.
Am J Hum Genet ; 103(5): 666-678, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30343943

RESUMO

Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the α1-subunit of the voltage-gated CaV2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed CaV2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.

12.
Hum Mutat ; 39(11): 1476-1484, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30311377

RESUMO

The field of epilepsy genetics is advancing rapidly and epilepsy is emerging as a frequent indication for diagnostic genetic testing. Within the larger ClinGen framework, the ClinGen Epilepsy Gene Curation Expert Panel is tasked with connecting two increasingly separate fields: the domain of traditional clinical epileptology, with its own established language and classification criteria, and the rapidly evolving area of diagnostic genetic testing that adheres to formal criteria for gene and variant curation. We identify critical components unique to the epilepsy gene curation effort, including: (a) precise phenotype definitions within existing disease and phenotype ontologies; (b) consideration of when epilepsy should be curated as a distinct disease entity; (c) strategies for gene selection; and (d) emerging rules for evaluating functional models for seizure disorders. Given that de novo variants play a prominent role in many of the epilepsies, sufficient genetic evidence is often awarded early in the curation process. Therefore, the emphasis of gene curation is frequently shifted toward an iterative precuration process to better capture phenotypic associations. We demonstrate that within the spectrum of neurodevelopmental disorders, gene curation for epilepsy-associated genes is feasible and suggest epilepsy-specific conventions, laying the groundwork for a curation process of all major epilepsy-associated genes.

13.
Genet Med ; 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30245509

RESUMO

PURPOSE: TANGO2-related disorders were first described in 2016 and prior to this publication, only 15 individuals with TANGO2-related disorder were described in the literature. Primary features include metabolic crisis with rhabdomyolysis, encephalopathy, intellectual disability, seizures, and cardiac arrhythmias. We assess whether genotype and phenotype of TANGO2-related disorder has expanded since the initial discovery and determine the efficacy of exome sequencing (ES) as a diagnostic tool for detecting variants. METHODS: We present a series of 14 individuals from 11 unrelated families with complex medical and developmental histories, in whom ES or microarray identified compound heterozygous or homozygous variants in TANGO2. RESULTS: The initial presentation of patients with TANGO2-related disorders can be variable, including primarily neurological presentations. We expand the phenotype and genotype for TANGO2, highlighting the variability of the disorder. CONCLUSION: TANGO2-related disorders can have a more diverse clinical presentation than previously anticipated. We illustrate the utility of routine ES data reanalysis whereby discovery of novel disease genes can lead to a diagnosis in previously unsolved cases and the need for additional copy-number variation analysis when ES is performed.

14.
Clin Case Rep ; 6(7): 1208-1213, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29988648

RESUMO

Clinical diagnostic exome sequencing (DES) is currently infrequently used for detecting uniparental disomy (UPD). We present a patient with a dual diagnosis of GLI2 haploinsufficiency as well as UPD of chromosome 20, both identified through DES. We therefore recommend routine UPD analysis during DES to identify this genetic aberration.

15.
Eur J Hum Genet ; 26(11): 1623-1634, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29925855

RESUMO

We explored the clinico-genetic basis of spinocerebellar ataxia 29 (SCA29) by determining the frequency, phenotype, and functional impact of ITPR1 missense variants associated with early-onset ataxia (EOA). Three hundred thirty one patients from a European EOA target cohort (n = 120), US-American EOA validation cohort (n = 72), and early-onset epileptic encephalopathy (EOEE) control cohort (n = 139) were screened for de novo ITPR1 variants. The target cohort was also screened for inherited ITPR1 variants. The variants' functional impact was determined by IP3-induced Ca2+ release in HEK293 cells. 3/120 patients (2.5%) from the target cohort and 4/72 patients (5.5%) from the validation cohort, but none from the EOEE control cohort, carried de novo ITPR1 variants. However, most ITPR1 variants (7/10 = 70%) in the target cohort were inherited from a healthy parent, with 3/6 patients carrying disease-causing variants in other genes. This suggests limited or no phenotypic impact of many ITPR1 missense variants, even if ultra-rare and well-conserved. While common bioinformatics tools did not discriminate de novo from other ITPR1 variants, functional characterization demonstrated reduced IP3-induced Ca2+ release for all de novo variants, including the recurrent c.805C>T (p.(R269W)) variant. In sum, these findings show that de novo ITPR1 missense variants are a recurrent cause of EOA (SCA29) across independent cohorts, acting via loss of IP3 channel function. Inherited ITPR1 variants are also enriched in EOA, but often without strong impact, albeit rare and well-conserved. Functional studies allow identifying ITPR1 variants with large impact, likely disease-causing. Such functional confirmation is warranted for inherited ITPR1 variants before making a SCA29 diagnosis.

16.
Nat Genet ; 50(7): 1048-1053, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29942082

RESUMO

Epilepsy is a frequent feature of neurodevelopmental disorders (NDDs), but little is known about genetic differences between NDDs with and without epilepsy. We analyzed de novo variants (DNVs) in 6,753 parent-offspring trios ascertained to have different NDDs. In the subset of 1,942 individuals with NDDs with epilepsy, we identified 33 genes with a significant excess of DNVs, of which SNAP25 and GABRB2 had previously only limited evidence of disease association. Joint analysis of all individuals with NDDs also implicated CACNA1E as a novel disease-associated gene. Comparing NDDs with and without epilepsy, we found missense DNVs, DNVs in specific genes, age of recruitment, and severity of intellectual disability to be associated with epilepsy. We further demonstrate the extent to which our results affect current genetic testing as well as treatment, emphasizing the benefit of accurate genetic diagnosis in NDDs with epilepsy.

17.
Am J Hum Genet ; 102(4): 557-573, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576218

RESUMO

Mitochondrial disorders causing neurodegeneration in childhood are genetically heterogeneous, and the underlying genetic etiology remains unknown in many affected individuals. We identified biallelic variants in PMPCB in individuals of four families including one family with two affected siblings with neurodegeneration and cerebellar atrophy. PMPCB encodes the catalytic subunit of the essential mitochondrial processing protease (MPP), which is required for maturation of the majority of mitochondrial precursor proteins. Mitochondria isolated from two fibroblast cell lines and induced pluripotent stem cells derived from one affected individual and differentiated neuroepithelial stem cells showed reduced PMPCB levels and accumulation of the processing intermediate of frataxin, a sensitive substrate for MPP dysfunction. Introduction of the identified PMPCB variants into the homologous S. cerevisiae Mas1 protein resulted in a severe growth and MPP processing defect leading to the accumulation of mitochondrial precursor proteins and early impairment of the biogenesis of iron-sulfur clusters, which are indispensable for a broad range of crucial cellular functions. Analysis of biopsy materials of an affected individual revealed changes and decreased activity in iron-sulfur cluster-containing respiratory chain complexes and dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes. We conclude that biallelic mutations in PMPCB cause defects in MPP proteolytic activity leading to dysregulation of iron-sulfur cluster biogenesis and triggering a complex neurological phenotype of neurodegeneration in early childhood.

18.
Genet Med ; 20(9): 1099-1102, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29388939

RESUMO

In the published version of this paper, some of the columns in the last three rows of Table 3 were mistakenly transposed. The corrected table appears below. In col. 6 of the row for DNMT3A, "S3" was published in the original article. However, in the revised table for the corrigendum, it has been corrected to "S1". In col. 6 of the row for SON, "S3" was published in the original article. However, in the revised table for the corrigendum, it has been corrected to "S2".

19.
Ann Neurol ; 83(4): 703-717, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29466837

RESUMO

OBJECTIVE: Voltage-gated sodium (Na+ ) channels underlie action potential generation and propagation and hence are central to the regulation of excitability in the nervous system. Mutations in the genes SCN1A, SCN2A, and SCN8A, encoding the Na+ channel pore-forming (α) subunits Nav1.1, 1.2, and 1.6, respectively, and SCN1B, encoding the accessory subunit ß1 , are established causes of genetic epilepsies. SCN3A, encoding Nav1.3, is known to be highly expressed in brain, but has not previously been linked to early infantile epileptic encephalopathy. Here, we describe a cohort of 4 patients with epileptic encephalopathy and heterozygous de novo missense variants in SCN3A (p.Ile875Thr in 2 cases, p.Pro1333Leu, and p.Val1769Ala). METHODS: All patients presented with treatment-resistant epilepsy in the first year of life, severe to profound intellectual disability, and in 2 cases (both with the variant p.Ile875Thr), diffuse polymicrogyria. RESULTS: Electrophysiological recordings of mutant channels revealed prominent gain of channel function, with a markedly increased amplitude of the slowly inactivating current component, and for 2 of 3 mutants (p.Ile875Thr and p.Pro1333Leu), a leftward shift in the voltage dependence of activation to more hyperpolarized potentials. Gain of function was not observed for Nav1.3 variants known or presumed to be inherited (p.Arg1642Cys and p.Lys1799Gln). The antiseizure medications phenytoin and lacosamide selectively blocked slowly inactivating over transient current in wild-type and mutant Nav1.3 channels. INTERPRETATION: These findings establish SCN3A as a new gene for infantile epileptic encephalopathy and suggest a potential pharmacologic intervention. These findings also reinforce the role of Nav1.3 as an important regulator of neuronal excitability in the developing brain, while providing additional insight into mechanisms of slow inactivation of Nav1.3. Ann Neurol 2018;83:703-717.

20.
Eur J Hum Genet ; 26(5): 695-708, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29463858

RESUMO

Pontocerebellar hypoplasia (PCH) represents a group of autosomal-recessive progressive neurodegenerative disorders of prenatal onset. Eleven PCH subtypes are classified according to clinical, neuroimaging and genetic findings. Individuals with PCH type 9 (PCH9) have a unique combination of postnatal microcephaly, hypoplastic cerebellum and pons, and hypoplastic or absent corpus callosum. PCH9 is caused by biallelic variants in AMPD2 encoding adenosine monophosphate deaminase 2; however, a homozygous AMPD2 frameshift variant has recently been reported in two family members with spastic paraplegia type 63 (SPG63). We identified homozygous or compound heterozygous AMPD2 variants in eight PCH-affected individuals from six families. The eight variants likely affect function and comprise one frameshift, one nonsense and six missense variants; seven of which were novel. The main clinical manifestations in the eight new patients and 17 previously reported individuals with biallelic AMPD2 variants were postnatal microcephaly, severe global developmental delay, spasticity, and central visual impairment. Brain imaging data identified hypomyelination, hypoplasia of the cerebellum and pons, atrophy of the cerebral cortex, complete or partial agenesis of the corpus callosum and the "figure 8" shape of the hypoplastic midbrain as consistent features. We broaden the AMPD2-related clinical spectrum by describing one individual without microcephaly and absence of the characteristic "figure 8" shape of the midbrain. The existence of various AMPD2 isoforms with different functions possibly explains the variability in phenotypes associated with AMPD2 variants: variants leaving some of the isoforms intact may cause SPG63, while those affecting all isoforms may result in the severe and early-onset PCH9.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA