Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 20: 100139, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34418567

RESUMO

Proteomics methodology has expanded to include protein structural analysis, primarily through cross-linking mass spectrometry (XL-MS) and hydrogen-deuterium exchange mass spectrometry (HX-MS). However, while the structural proteomics community has effective tools for primary data analysis, there is a need for structure modeling pipelines that are accessible to the proteomics specialist. Integrative structural biology requires the aggregation of multiple distinct types of data to generate models that satisfy all inputs. Here, we describe IMProv, an app in the Mass Spec Studio that combines XL-MS data with other structural data, such as cryo-EM densities and crystallographic structures, for integrative structure modeling on high-performance computing platforms. The resource provides an easily deployed bundle that includes the open-source Integrative Modeling Platform program (IMP) and its dependencies. IMProv also provides functionality to adjust cross-link distance restraints according to the underlying dynamics of cross-linked sites, as characterized by HX-MS. A dynamics-driven conditioning of restraint values can improve structure modeling precision, as illustrated by an integrative structure of the five-membered Polycomb Repressive Complex 2. IMProv is extensible to additional types of data.

2.
Anal Chem ; 93(9): 4246-4254, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33592142

RESUMO

The data analysis practices associated with hydrogen-deuterium exchange mass spectrometry (HX-MS) lag far behind that of most other MS-based protein analysis tools. A reliance on external tools from other fields and a persistent need for manual data validation restrict this powerful technology to the expert user. Here, we provide an extensive upgrade to the HX data analysis suite available in the Mass Spec Studio in the form of two new apps (HX-PIPE and HX-DEAL), completing a workflow that provides an HX-tailored peptide identification capability, accelerated validation routines, automated spectral deconvolution strategies, and a rich set of exportable graphics and statistical reports. With these new tools, we demonstrate that the peptide identifications obtained from undeuterated samples generated at the start of a project contain information that helps predict and control the extent of manual validation required. We also uncover a large fraction of HX-usable peptides that remains unidentified in most experiments. We show that automated spectral deconvolution routines can identify exchange regimes in a project-wide manner, although they remain difficult to accurately assign in all scenarios. Taken together, these new tools provide a robust and complete solution suitable for the analysis of high-complexity HX-MS data.

3.
Structure ; 29(5): 467-478.e6, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33412091

RESUMO

In the non-homologous end-joining (NHEJ) of a DNA double-strand break, DNA ends are bound and protected by DNA-PK, which synapses across the break to tether the broken ends and initiate repair. There is little clarity surrounding the nature of the synaptic complex and the mechanism governing the transition to repair. We report an integrative structure of the synaptic complex at a precision of 13.5 Å, revealing a symmetric head-to-head arrangement with a large offset in the DNA ends and an extensive end-protection mechanism involving a previously uncharacterized plug domain. Hydrogen/deuterium exchange mass spectrometry identifies an allosteric pathway connecting DNA end-binding with the kinase domain that places DNA-PK under tension in the kinase-active state. We present a model for the transition from end-protection to repair, where the synaptic complex supports hierarchical processing of the ends and scaffold assembly, requiring displacement of the catalytic subunit and tension release through kinase activity.


Assuntos
Proteína Quinase Ativada por DNA/química , Complexo Sinaptonêmico/química , Sítios de Ligação , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA/metabolismo , Células HeLa , Holoenzimas , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Complexo Sinaptonêmico/metabolismo
4.
J Proteomics ; 225: 103844, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32480078

RESUMO

Structural Mass Spectrometry (SMS) provides a comprehensive toolbox for the analysis of protein structure and function. It offers multiple sources of structural information that are increasingly useful for integrative structural modeling of complex protein systems. As MS-based structural workflows scale to larger systems, consistent and coherent data interpretation resources are needed to better support modeling. Unlike the proteomics community, practitioners of SMS lack adequate computational tools. Here, we review new developments in the Mass Spec Studio: an expandable ecosystem of workflows for the analysis of complementary SMS techniques with linkages to modeling. Current functionality in the Studio (version 2) supports three major SMS workflows (crosslinking, hydrogen/deuterium exchange and covalent labelling) and two pipelines for structural modeling, with a special focus on data integration. The Mass Spec Studio is an architecture focused on rapid and robust extension of functionality by a community of developers. SIGNIFICANCE: This review surveys the new data analysis capabilities within the Mass Spec Studio, a rich framework for rapid software development specifically targeting the community of structural proteomics and structural mass spectrometry. Updates to crosslinking, hydrogen/deuterium-exchange and covalent labeling apps are provided as well as a utility for translating such analyses into restraints that support integrative structural modeling. These new capabilities, together with the underlying design tools and content, provide the community with a wealth of resources to tackle complex structural problem and design new approaches to data analysis.


Assuntos
Ecossistema , Proteínas , Espectrometria de Massas , Proteômica , Software
5.
Prog Biophys Mol Biol ; 147: 92-102, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31570166

RESUMO

X-ray crystallography and electron microscopy maps resolved to 3-8 Šare generally sufficient for tracing the path of the polypeptide chain in space, while often insufficient for unambiguously registering the sequence on the path (i.e., threading). Frequently, however, additional information is available from other biophysical experiments, physical principles, statistical analyses, and other prior models. Here, we formulate an integrative approach for sequence assignment to a partial backbone model as an optimization problem, which requires three main components: the representation of the system, the scoring function, and the optimization method. The method is implemented in the open source Integrative Modeling Platform (IMP) (https://integrativemodeling.org), allowing a number of different terms in the scoring function. We apply this method to localizing the sequence assignment within a 199-residue disordered region of three structured and sequence unassigned helices in the DNA-PKcs crystallographic structure, using chemical crosslinks, hydrogen deuterium exchange, and sequence connectivity. The resulting ensemble of threading models provides two major solutions, one of which suggests that the crucial ABCDE cluster of phosphorylation sites cannot undergo intra-molecular autophosphorylation without a conformational rearrangement. The ensemble of solutions embodies the most accurate and precise sequence threading given the available information.


Assuntos
Proteína Quinase Ativada por DNA/química , Proteína Quinase Ativada por DNA/metabolismo , Medição da Troca de Deutério , Cristalografia por Raios X , Fosforilação , Conformação Proteica em alfa-Hélice
6.
PLoS Pathog ; 13(3): e1006244, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28257520

RESUMO

Lactoferrin binding protein B (LbpB) is a bi-lobed outer membrane-bound lipoprotein that comprises part of the lactoferrin (Lf) receptor complex in Neisseria meningitidis and other Gram-negative pathogens. Recent studies have demonstrated that LbpB plays a role in protecting the bacteria from cationic antimicrobial peptides due to large regions rich in anionic residues in the C-terminal lobe. Relative to its homolog, transferrin-binding protein B (TbpB), there currently is little evidence for its role in iron acquisition and relatively little structural and biophysical information on its interaction with Lf. In this study, a combination of crosslinking and deuterium exchange coupled to mass spectrometry, information-driven computational docking, bio-layer interferometry, and site-directed mutagenesis was used to probe LbpB:hLf complexes. The formation of a 1:1 complex of iron-loaded Lf and LbpB involves an interaction between the Lf C-lobe and LbpB N-lobe, comparable to TbpB, consistent with a potential role in iron acquisition. The Lf N-lobe is also capable of binding to negatively charged regions of the LbpB C-lobe and possibly other sites such that a variety of higher order complexes are formed. Our results are consistent with LbpB serving dual roles focused primarily on iron acquisition when exposed to limited levels of iron-loaded Lf on the mucosal surface and effectively binding apo Lf when exposed to high levels at sites of inflammation.


Assuntos
Proteína B de Ligação a Transferrina/química , Proteína B de Ligação a Transferrina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Interferometria , Ferro/metabolismo , Espectrometria de Massas , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Neisseria meningitidis/química , Neisseria meningitidis/metabolismo , Ligação Proteica
7.
Analyst ; 142(6): 904-910, 2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-28154854

RESUMO

Hydrogen-deuterium exchange mass spectrometry (HX-MS) has made important contributions to the study of protein structure and function. Unfortunately, it is not known for low limits of detection, when compared with other forms of peptide-based or bottom-up protein MS methods. Systems perform poorly on sub-pmol quantities of protein states with greater than 300 kDa of unique sequences. The HX-MS analysis of complex protein states would be possible if proteomics-grade configurations could be used reliably, but temperature and temporal constraints have proven to be significant design challenges. Here, we describe an integrated HX-MS ion source operating on a vented-column geometry, which brings regulated column cooling right to the spray tip. The design offers chromatographic peak widths of 2-6 s (FWHM). It provides stable operation at 500 nL min-1, while retaining deuteration levels comparable to conventional geometries. We demonstrate at least a 50-fold improvement in protein consumption levels, and illustrate robustness by measuring peptide-averaged protection factors for 90% of DNA-PKcs, a 469 kDa protein, from 0.5 pmol injections.


Assuntos
Medição da Troca de Deutério , Conformação Proteica , Proteínas/química , Espectrometria de Massas
8.
Mol Cell Proteomics ; 15(9): 3071-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27412762

RESUMO

The Mass Spec Studio package was designed to support the extraction of hydrogen-deuterium exchange and covalent labeling data for a range of mass spectrometry (MS)-based workflows, to integrate with restraint-driven protein modeling activities. In this report, we present an extension of the underlying Studio framework and provide a plug-in for crosslink (XL) detection. To accommodate flexibility in XL methods and applications, while maintaining efficient data processing, the plug-in employs a peptide library reduction strategy via a presearch of the tandem-MS data. We demonstrate that prescoring linear unmodified peptide tags using a probabilistic approach substantially reduces search space by requiring both crosslinked peptides to generate sparse data attributable to their linear forms. The method demonstrates highly sensitive crosslink peptide identification with a low false positive rate. Integration with a Haddock plug-in provides a resource that can combine multiple sources of data for protein modeling activities. We generated a structural model of porcine transferrin bound to TbpB, a membrane-bound receptor essential for iron acquisition in Actinobacillus pleuropneumoniae Using mutational data and crosslinking restraints, we confirm the mechanism by which TbpB recognizes the iron-loaded form of transferrin, and note the requirement for disparate sources of restraint data for accurate model construction. The software plugin is freely available at www.msstudio.ca.


Assuntos
Actinobacillus pleuropneumoniae/metabolismo , Reagentes para Ligações Cruzadas/química , Peptídeos/análise , Proteína B de Ligação a Transferrina/metabolismo , Transferrina/metabolismo , Actinobacillus pleuropneumoniae/química , Actinobacillus pleuropneumoniae/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Mutação , Peptídeos/química , Ligação Proteica , Conformação Proteica , Software , Suínos , Espectrometria de Massas em Tandem , Transferrina/química , Proteína B de Ligação a Transferrina/química , Proteína B de Ligação a Transferrina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...