Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(15): 8757-8776, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34379789

RESUMO

As compared to eukaryotes, bacteria have a reduced tRNA gene set encoding between 30 and 220 tRNAs. Although in most bacterial phyla tRNA genes are dispersed in the genome, many species from distinct phyla also show genes forming arrays. Here, we show that two types of arrays with distinct evolutionary origins exist. This work focuses on long tRNA gene arrays (L-arrays) that encompass up to 43 genes, which disseminate by horizontal gene transfer and contribute supernumerary tRNA genes to the host. Although in the few cases previously studied these arrays were reported to be poorly transcribed, here we show that the L-array of the model cyanobacterium Anabaena sp. PCC 7120, encoding 23 functional tRNAs, is largely induced upon impairment of the translation machinery. The cellular response to this challenge involves a global reprogramming of the transcriptome in two phases. tRNAs encoded in the array are induced in the second phase of the response, directly contributing to cell survival. Results presented here show that in some bacteria the tRNA gene set may be partitioned between a housekeeping subset, which constantly sustains translation, and an inducible subset that is generally silent but can provide functionality under particular conditions.


Assuntos
Genes Bacterianos , Óperon , Biossíntese de Proteínas , RNA de Transferência/genética , Estresse Fisiológico/genética , Anabaena/genética , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Viabilidade Microbiana/genética , RNA de Transferência/metabolismo , Sequências Reguladoras de Ácido Nucleico
2.
Environ Microbiol ; 23(8): 4823-4837, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34296514

RESUMO

FtsZ is a tubulin-like GTPase that polymerizes to initiate the process of cell division in bacteria. Heterocysts are terminally differentiated cells of filamentous cyanobacteria that have lost the capacity for cell division and in which the ftsZ gene is downregulated. However, mechanisms of FtsZ regulation during heterocyst differentiation have been scarcely investigated. The patD gene is NtcA dependent and involved in the optimization of heterocyst frequency in Anabaena sp. PCC 7120. Here, we report that the inactivation of patD caused the formation of multiple FtsZ-rings in vegetative cells, cell enlargement, and the retention of peptidoglycan synthesis activity in heterocysts, whereas its ectopic expression resulted in aberrant FtsZ polymerization and cell division. PatD interacted with FtsZ, increased FtsZ precipitation in sedimentation assays, and promoted the formation of thick straight FtsZ bundles that differ from the toroidal aggregates formed by FtsZ alone. These results suggest that in the differentiating heterocysts, PatD interferes with the assembly of FtsZ. We propose that in Anabaena FtsZ is a bifunctional protein involved in both vegetative cell division and regulation of heterocyst differentiation. In the differentiating cells PatD-FtsZ interactions appear to set an FtsZ activity that is insufficient for cell division but optimal to foster differentiation.

3.
Elife ; 102021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33749592

RESUMO

Circadian clocks display remarkable reliability despite significant stochasticity in biomolecular reactions. We study the dynamics of a circadian clock-controlled gene at the individual cell level in Anabaena sp. PCC 7120, a multicellular filamentous cyanobacterium. We found significant synchronization and spatial coherence along filaments, clock coupling due to cell-cell communication, and gating of the cell cycle. Furthermore, we observed low-amplitude circadian oscillatory transcription of kai genes encoding the post-transcriptional core oscillatory circuit and high-amplitude oscillations of rpaA coding for the master regulator transducing the core clock output. Transcriptional oscillations of rpaA suggest an additional level of regulation. A stochastic one-dimensional toy model of coupled clock cores and their phosphorylation states shows that demographic noise can seed stochastic oscillations outside the region where deterministic limit cycles with circadian periods occur. The model reproduces the observed spatio-temporal coherence along filaments and provides a robust description of coupled circadian clocks in a multicellular organism.

4.
mSphere ; 6(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441411

RESUMO

In filamentous heterocyst-forming (N2-fixing) cyanobacteria, septal junctions join adjacent cells, mediating intercellular communication, and are thought to traverse the septal peptidoglycan through nanopores. Fluorescence recovery after photobleaching (FRAP) analysis with the fluorescent marker calcein showed that cultures of Anabaena sp. strain PCC 7120 grown in the presence of combined nitrogen contained a substantial fraction of noncommunicating cells (58% and 80% of the tested vegetative cells in nitrate- and ammonium-grown cultures, respectively), whereas cultures induced for nitrogen fixation contained far fewer noncommunicating cells (16%). A single filament could have communicating and noncommunicating cells. These observations indicate that all (or most of) the septal junctions in a cell can be coordinately regulated and are coherent with the need for intercellular communication, especially under diazotrophic conditions. Consistently, intercellular exchange was observed to increase in response to N deprivation and to decrease rapidly in response to the presence of ammonium in the medium or to nitrate assimilation. Proteins involved in the formation of septal junctions have been identified in Anabaena and include SepJ, FraC, and FraD. Here, we reevaluated rates of intercellular transfer of calcein and the number of nanopores in mutants lacking these proteins and found a strong positive correlation between the two parameters only in cultures induced for nitrogen fixation. Thus, whereas the presence of a substantial number of noncommunicating cells appears to impair the correlation, data obtained in diazotrophic cultures support the idea that the nanopores are the structures that hold the septal junctions.IMPORTANCE Multicellularity is found in bacteria as well as in eukaryotes, and the filamentous heterocyst-forming (N2-fixing) cyanobacteria represent a simple and ancient paradigm of multicellular organisms. Multicellularity generally involves cell-cell adhesion and communication. The cells in the cyanobacterial filaments are joined by proteinaceous septal junctions that mediate molecular diffusion. The septal junctions traverse the septal peptidoglycan, which bears holes termed nanopores. Our results show that the septal junctions can be coordinately regulated in a cell and emphasize the relationship between septal junctions and nanopores to build intercellular communication structures, which are essential for the multicellular behavior of heterocyst-forming cyanobacteria.


Assuntos
Anabaena/citologia , Anabaena/metabolismo , Citoesqueleto/metabolismo , Fixação de Nitrogênio , Anabaena/genética , Proteínas de Bactérias/genética , Citoesqueleto/ultraestrutura , Fluoresceínas/metabolismo , Regulação Bacteriana da Expressão Gênica , Microscopia Eletrônica de Transmissão , Nanoporos
5.
mSphere ; 5(5)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115834

RESUMO

The model cyanobacterium Anabaena sp. PCC 7120 exhibits a phototrophic metabolism relying on oxygenic photosynthesis and a complex morphology. The organismic unit is a filament of communicated cells that may include cells specialized in different nutritional tasks, thus representing a paradigm of multicellular bacteria. In Anabaena, the inorganic carbon and nitrogen regime influenced not only growth, but also cell size, cell shape, and filament length, which also varied through the growth cycle. When using combined nitrogen, especially with abundant carbon, cells enlarged and elongated during active growth. When fixing N2, which imposed lower growth rates, shorter and smaller cells were maintained. In Anabaena, gene homologs to mreB, mreC, and mreD form an operon that was expressed at higher levels during the phase of fastest growth. In an ntcA mutant, mre transcript levels were higher than in the wild type and, consistently, cells were longer. Negative regulation by NtcA can explain that Anabaena cells were longer in the presence of combined nitrogen than in diazotrophic cultures, in which the levels of NtcA are higher. mreB, mreC, and mreD mutants could grow with combined nitrogen, but only the latter mutant could grow diazotrophically. Cells were always larger and shorter than wild-type cells, and their orientation in the filament was inverted. Consistent with increased peptidoglycan width and incorporation in the intercellular septa, filaments were longer in the mutants, suggesting a role for MreB, MreC, and MreD in the construction of septal peptidoglycan that could affect intercellular communication required for diazotrophic growth.IMPORTANCE Most studies on the determination of bacterial cell morphology have been conducted in heterotrophic organisms. Here, we present a study of how the availability of inorganic nitrogen and carbon sources influence cell size and morphology in the context of a phototrophic metabolism, as found in the multicellular cyanobacterium Anabaena In Anabaena, the expression of the MreB, MreC, and MreD proteins, which influence cell size and length, are regulated by NtcA, a transcription factor that globally coordinates cellular responses to the C-to-N balance of the cells. Moreover, MreB, MreC, and MreD also influence septal peptidoglycan construction, thus affecting filament length and, possibly, intercellular molecular exchange that is required for diazotrophic growth. Thus, here we identified new roles for Mre proteins in relation to the phototrophic and multicellular character of a cyanobacterium, Anabaena.

6.
mSphere ; 5(3)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434840

RESUMO

The Anabaena organismic unit is a filament of communicating cells. Under conditions of nitrogen scarcity, some cells along the filament differentiate into heterocysts, which are specialized in the fixation of atmospheric N2 and provide the vegetative cells with N2 fixation products. At a certain stage, the differentiation process becomes irreversible, so that even when nitrogen is replenished, no return to the vegetative cell state takes place, possibly as a consequence of loss of cell division capacity. Upon N-stepdown, midcell FtsZ-rings were detected in vegetative cells, but not in differentiating cells, and this was also the case for ZipN, an essential protein that participates in FtsZ tethering to the cytoplasmic membrane and divisome organization. Later, expression of ftsZ was arrested in mature heterocysts. PatA is a protein required for the differentiation of intercalary heterocysts in Anabaena The expression level of the patA gene was increased in differentiating cells, and a mutant strain lacking PatA exhibited enhanced FtsZ-rings. PatA was capable of direct interactions with ZipN and SepF, another essential component of the Anabaena Z-ring. Thus, PatA appears to promote inhibition of cell division in the differentiating cells, allowing progress of the differentiation process. PatA, which in mature heterocysts was detected at the cell poles, could interact also with SepJ, a protein involved in production of the septal junctions that provide cell-cell adhesion and intercellular communication in the filament, hinting at a further role of PatA in the formation or stability of the intercellular structures that are at the basis of the multicellular character of Anabaena IMPORTANCE Anabaena is a cyanobacterial model that represents an ancient and simple form of biological multicellularity. The Anabaena organism is a filament of cohesive and communicating cells that can include cells specialized in different tasks. Thus, under conditions of nitrogen scarcity, certain cells of the filament differentiate into heterocysts, which fix atmospheric nitrogen and provide organic nitrogen to the rest of cells, which, in turn, provide heterocysts with organic carbon. Heterocyst differentiation involves extensive morphological, biochemical, and genetic changes, becoming irreversible at a certain stage. We studied the regulation during heterocyst differentiation of several essential components of the Anabaena cell division machinery and found that protein PatA, which is required for differentiation and is induced in differentiating cells, interacts with essential cell division factors and destabilizes the cell division complex. This suggests a mechanism for establishment of commitment to differentiation by inhibition of cell division.

7.
Mol Microbiol ; 113(6): 1140-1154, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32039534

RESUMO

Cyanobacteria are unique among the eubacteria as they possess a hybrid Gram phenotype, having an outer membrane but also a comparably thick peptidoglycan sheet. Furthermore, the cyanobacterial divisome includes proteins specific for both the Gram types as well as cyanobacteria-specific proteins. Cells in multicellular cyanobacteria share a continuous periplasm and their cytoplasms are connected by septal junctions that enable communication between cells in the filament. The localization of septal junction proteins depends on interaction with the divisome, however additional yet unknown proteins may be involved in this process. Here, we characterized Alr3364 (termed SepI), a novel septal protein that interacts with the divisome in the multicellular heterocystous cyanobacterium Anabaena sp. strain PCC 7120. SepI localized to the Z-ring and the intercellular septa but did not interact with FtsZ. Instead, SepI interacted with the divisome proteins ZipN, SepF and FtsI and with the septal protein SepJ. The inactivation of sepI led to a defect in cell filament integrity, colony and cell morphology, septum size, nanopore formation and peptidoglycan biogenesis, and inability to differentiate heterocysts. Our results show that SepI plays a role in intercellular communication and furthermore indicate that SepI functions in the coordination of septal junction localization during cell division.


Assuntos
Anabaena/crescimento & desenvolvimento , Proteínas da Membrana Bacteriana Externa/metabolismo , Divisão Celular/fisiologia , Interações Microbianas/fisiologia , Anabaena/genética , Anabaena/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Peptidoglicano/biossíntese
8.
Life (Basel) ; 9(2)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083350

RESUMO

Filamentous, heterocyst-forming cyanobacteria are phototrophic multicellular organisms in which N2-fixing heterocysts and CO2-fixing vegetative cells exchange regulators and nutrients [...].

9.
Sci Rep ; 9(1): 2744, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808920

RESUMO

The organismic unit of heterocyst-forming cyanobacteria is a filament of communicating cells connected by septal junctions, proteinaceous structures bridging the cytoplasms of contiguous cells. This distinct bacterial organization is preserved during cell division. In Anabaena, deletion of the zipN gene could not be segregated. We generated strain CSL109 that expresses zipN from a synthetic regulatable promoter. Under conditions of ZipN depletion, cells progressively enlarged, reflecting restricted cell division, and showed drastic morphological alterations including cell detachment from the filaments, to finish lysing. In contrast to the wild-type localization in midcell Z-rings, FtsZ was found in delocalized aggregates in strain CSL109. Consistently, the proportion of membrane-associated to soluble FtsZ in fractionated cell extracts was lower in CSL109. Bacterial two-hybrid analysis showed that ZipN interacts with FtsZ and other cell-division proteins including cytoplasmic Ftn6 and SepF, and polytopic FtsW, FtsX, FtsQ and FtsI. Additionally, ZipN interacted with the septal protein SepJ, and in CSL109 depletion of ZipN was concomitant with a progressive loss of septal specificity of SepJ. Thus, in Anabaena ZipN represents an essential FtsZ membrane tether and an organizer of the divisome, and it contributes to the conformation of septal structures for filament integrity and intercellular communication.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Citoplasma/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética
10.
Mol Microbiol ; 111(4): 883-897, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30636068

RESUMO

Arginine participates widely in metabolic processes. The heterocyst-forming cyanobacterium Anabaena catabolizes arginine to produce proline and glutamate, with concomitant release of ammonium, as major products. Analysis of mutant Anabaena strains showed that this catabolic pathway is the product of two genes, agrE (alr4995) and putA (alr0540). The predicted PutA protein is a conventional, bifunctional proline oxidase that produces glutamate from proline. In contrast, AgrE is a hitherto unrecognized enzyme that contains both an N-terminal α/ß propeller domain and a unique C-terminal domain of previously unidentified function. In vitro analysis of the proteins expressed in Escherichia coli or Anabaena showed arginine dihydrolase activity of the N-terminal domain and ornithine cyclodeaminase activity of the C-terminal domain, overall producing proline from arginine. In the diazotrophic filaments of Anabaena, ß-aspartyl-arginine dipeptide is transferred from the heterocysts to the vegetative cells, where it is cleaved producing aspartate and arginine. Both agrE and putA were found to be expressed at higher levels in vegetative cells than in heterocysts, implying that arginine is catabolized by the AgrE-PutA pathway mainly in the vegetative cells. Expression in Anabaena of a homolog of the C-terminal domain of AgrE obtained from Methanococcus maripaludis enabled us to identify an archaeal ornithine cyclodeaminase.


Assuntos
Amônia-Liases/metabolismo , Anabaena/enzimologia , Arginina/metabolismo , Prolina/metabolismo , Amônia-Liases/genética , Anabaena/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas , Fixação de Nitrogênio , Prolina Oxidase/genética , Prolina Oxidase/metabolismo
11.
Environ Microbiol ; 21(1): 1-17, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30066380

RESUMO

Heterocyst-forming cyanobacteria are filamentous organisms that perform oxygenic photosynthesis and CO2 fixation in vegetative cells and nitrogen fixation in heterocysts, which are formed under deprivation of combined nitrogen. These organisms can acclimate to use different sources of nitrogen and respond to different levels of CO2 . Following work mainly done with the best studied heterocyst-forming cyanobacterium, Anabaena, here we summarize the mechanisms of assimilation of ammonium, nitrate, urea and N2 , the latter involving heterocyst differentiation, and describe aspects of CO2 assimilation that involves a carbon concentration mechanism. These processes are subjected to regulation establishing a hierarchy in the assimilation of nitrogen sources -with preference for the most reduced nitrogen forms- and a dependence on sufficient carbon. This regulation largely takes place at the level of gene expression and is exerted by a variety of transcription factors, including global and pathway-specific transcriptional regulators. NtcA is a CRP-family protein that adjusts global gene expression in response to the C-to-N balance in the cells, and PacR is a LysR-family transcriptional regulator (LTTR) that extensively acclimates the cells to oxygenic phototrophy. A cyanobacterial-specific transcription factor, HetR, is involved in heterocyst differentiation, and other LTTR factors are specifically involved in nitrate and CO2 assimilation.


Assuntos
Anabaena/genética , Carbono/metabolismo , Nitrogênio/metabolismo , Anabaena/crescimento & desenvolvimento , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio , Oxigênio/metabolismo , Fotossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Biochim Biophys Acta Gene Regul Mech ; 1862(7): 673-684, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29719238

RESUMO

Filamentous, heterocyst-forming cyanobacteria are among the simplest multicellular systems in Nature. In the absence of combined nitrogen, the filaments consist of vegetative cells that fix CO2 through oxygenic photosynthesis and micro-oxic heterocysts specialized for the fixation of N2 in a proportion of about 10 to 1. The development of a heterocyst-containing filament involves differentiation of vegetative cells into heterocysts in a process that requires a distinct gene expression program. Two transcription factors are strictly required, NtcA and HetR. The CRP-family protein NtcA directly activates the expression of multiple genes during heterocyst differentiation - in some cases assisted by coactivators including HetR - and in mature heterocysts, whereas HetR is needed to build high NtcA levels in differentiating heterocysts and directly activates some particular genes. A few other regulators of gene expression participate at specific differentiation steps, and a specific transcription factor, CnfR, activates nif gene expression under the micro-oxic conditions of the heterocyst.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/crescimento & desenvolvimento , Fatores de Transcrição/genética , Proteínas de Bactérias/química , Cianobactérias/genética , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Modelos Moleculares , Fatores de Transcrição/química
13.
Front Microbiol ; 9: 2260, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333801

RESUMO

Filamentous cyanobacteria grow by intercalary cell division, which should involve distinct steps compared to those producing separate daughter cells. The N-terminal region of FtsZ is highly conserved in the clade of filamentous cyanobacteria capable of cell differentiation. A derivative of the model strain Anabaena sp. PCC 7120 expressing only an FtsZ lacking the amino acids 2-51 of the N-terminal peptide (ΔN-FtsZ) could not be segregated. Strain CSL110 expresses both ΔN-FtsZ, from the endogenous ftsZ gene promoter, and the native FtsZ from a synthetic regulated promoter. Under conditions of ΔN-FtsZ predominance, cells of strain CSL110 progressively enlarge, reflecting reduced cell division, and show instances of asymmetric cell division and aberrant Z-structures notably differing from the Z-ring formed by FtsZ in the wild type. In bacterial 2-hybrid assays FtsZ interacted with ΔN-FtsZ. However, ΔN-FtsZ-GFP appeared impaired for incorporation into Z-rings when expressed together with FtsZ. FtsZ, but not ΔN-FtsZ, interacted with the essential protein SepF. Both FtsZ and ΔN-FtsZ polymerize in vitro exhibiting comparable GTPase activities. However, filaments of FtsZ show a distinct curling forming toroids, whereas ΔN-FtsZ form thick bundles of straight filaments. Thus, the N-terminal FtsZ sequence appears to contribute to a distinct FtsZ polymerization mode that is essential for cell division and division plane location in Anabaena.

14.
Mol Microbiol ; 101(6): 968-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27273832

RESUMO

Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation.


Assuntos
Anabaena/metabolismo , Proteínas de Bactérias/metabolismo , Anabaena/genética , Proteínas de Bactérias/genética , Difusão , Regulação Bacteriana da Expressão Gênica , Peptidoglicano/metabolismo
15.
Trends Microbiol ; 24(2): 79-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26748968

RESUMO

In the filaments of heterocyst-forming cyanobacteria, septal junctions that traverse the septal peptidoglycan join adjacent cells, allowing intercellular communication. Perforations in the septal peptidoglycan have been observed, and proteins involved in the formation of such perforations and putative protein components of the septal junctions have been identified, but their relationships are debated.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica , Peptidoglicano/metabolismo
16.
FEMS Microbiol Rev ; 40(6): 831-854, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28204529

RESUMO

Cyanobacteria carry out oxygenic photosynthesis, play a key role in the cycling of carbon and nitrogen in the biosphere, and have had a large impact on the evolution of life and the Earth itself. Many cyanobacterial strains exhibit a multicellular lifestyle, growing as filaments that can be hundreds of cells long and endowed with intercellular communication. Furthermore, under depletion of combined nitrogen, filament growth requires the activity of two interdependent cell types: vegetative cells that fix CO2 and heterocysts that fix N2. Intercellular molecular transfer is essential for signaling involved in the regulation of heterocyst differentiation and for reciprocal nutrition of heterocysts and vegetative cells. Here we review various aspects of multicellularity in cyanobacterial filaments and their differentiation, including filament architecture with emphasis on the structures used for intercellular communication; we survey theoretical models that have been put forward to understand heterocyst patterning and discuss the factors that need to be considered for these models to reflect the biological entity; and finally, since cell division in filamentous cyanobacteria has the peculiarity of producing linked instead of independent cells, we review distinct aspects of cell division in these organisms.


Assuntos
Fenômenos Fisiológicos Celulares/fisiologia , Cianobactérias , Anabaena , Cianobactérias/citologia , Cianobactérias/fisiologia
17.
Mol Microbiol ; 99(4): 808-19, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26552991

RESUMO

Many filamentous cyanobacteria respond to the external cue of nitrogen scarcity by the differentiation of heterocysts, cells specialized in the fixation of atmospheric nitrogen in oxic environments. Heterocysts follow a spatial pattern along the filament of two heterocysts separated by ca. 10-15 vegetative cells performing oxygenic photosynthesis. HetR is a transcriptional regulator that directs heterocyst differentiation. In the model strain Anabaena sp. PCC 7120, the HetR protein was observed in various oligomeric forms in vivo, including a tetramer that peaked with maximal hetR expression during differentiation. Tetramers were not detected in a hetR point mutant incapable of differentiation, but were conspicuous in an over-differentiating strain lacking the PatS inhibitor. In differentiated filaments the HetR tetramer was restricted to heterocysts, being undetectable in vegetative cells. HetR co-purified with RNA polymerase from Anabaena mainly as a tetramer. In vitro, purified recombinant HetR was distributed between monomers, dimers, trimers and tetramers, and it was phosphorylated when incubated with (γ-(32)P)ATP. Phosphorylation and PatS hampered the accumulation of HetR tetramers and impaired HetR binding to DNA. In summary, tetrameric HetR appears to represent a functionally relevant form of HetR, whose abundance in the Anabaena filament could be negatively regulated by phosphorylation and by PatS.


Assuntos
Anabaena/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Anabaena/metabolismo , Proteínas de Bactérias/genética , Nitrogênio/metabolismo , Fosforilação , Mutação Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética
18.
PLoS Genet ; 11(4): e1005031, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25830300

RESUMO

Under nitrogen deprivation, filaments of the cyanobacterium Anabaena undergo a process of development, resulting in a one-dimensional pattern of nitrogen-fixing heterocysts separated by about ten photosynthetic vegetative cells. Many aspects of gene expression before nitrogen deprivation and during the developmental process remain to be elucidated. Furthermore, the coupling of gene expression fluctuations between cells along a multicellular filament is unknown. We studied the statistics of fluctuations of gene expression of HetR, a transcription factor essential for heterocyst differentiation, both under steady-state growth in nitrogen-rich conditions and at different times following nitrogen deprivation, using a chromosomally-encoded translational hetR-gfp fusion. Statistical analysis of fluorescence at the individual cell level in wild-type and mutant filaments demonstrates that expression fluctuations of hetR in nearby cells are coupled, with a characteristic spatial range of circa two to three cells, setting the scale for cellular interactions along a filament. Correlations between cells predominantly arise from intercellular molecular transfer and less from cell division. Fluctuations after nitrogen step-down can build up on those under nitrogen-replete conditions. We found that under nitrogen-rich conditions, basal, steady-state expression of the HetR inhibitor PatS, cell-cell communication influenced by the septal protein SepJ and positive HetR auto-regulation are essential determinants of fluctuations in hetR expression and its distribution along filaments. A comparison between the expression of hetR-gfp under nitrogen-rich and nitrogen-poor conditions highlights the differences between the two HetR inhibitors PatS and HetN, as well as the differences in specificity between the septal proteins SepJ and FraC/FraD. Activation, inhibition and cell-cell communication lie at the heart of developmental processes. Our results show that proteins involved in these basic ingredients combine together in the presence of inevitable stochasticity in gene expression, to control the coupled fluctuations of gene expression that give rise to a one-dimensional developmental pattern in this organism.


Assuntos
Anabaena/genética , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/metabolismo , Anabaena/crescimento & desenvolvimento , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Periodicidade , Transporte Proteico , Fatores de Transcrição/genética
19.
Life (Basel) ; 5(2): 1282-300, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25915115

RESUMO

Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

20.
mBio ; 6(2): e02109, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25784700

RESUMO

UNLABELLED: Many filamentous cyanobacteria produce specialized nitrogen-fixing cells called heterocysts, which are located at semiregular intervals along the filament with about 10 to 20 photosynthetic vegetative cells in between. Nitrogen fixation in these complex multicellular bacteria depends on metabolite exchange between the two cell types, with the heterocysts supplying combined-nitrogen compounds but dependent on the vegetative cells for photosynthetically produced carbon compounds. Here, we used a fluorescent tracer to probe intercellular metabolite exchange in the filamentous heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. We show that esculin, a fluorescent sucrose analog, is incorporated by a sucrose import system into the cytoplasm of Anabaena cells. The cytoplasmic esculin is rapidly and reversibly exchanged across vegetative-vegetative and vegetative-heterocyst cell junctions. Our measurements reveal the kinetics of esculin exchange and also show that intercellular metabolic communication is lost in a significant fraction of older heterocysts. SepJ, FraC, and FraD are proteins located at the intercellular septa and are suggested to form structures analogous to gap junctions. We show that a ΔsepJ ΔfraC ΔfraD triple mutant shows an altered septum structure with thinner septa but a denser peptidoglycan layer. Intercellular diffusion of esculin and fluorescein derivatives is impaired in this mutant, which also shows a greatly reduced frequency of nanopores in the intercellular septal cross walls. These findings suggest that FraC, FraD, and SepJ are important for the formation of junctional structures that constitute the major pathway for feeding heterocysts with sucrose. IMPORTANCE: Anabaena and its relatives are filamentous cyanobacteria that exhibit a sophisticated form of prokaryotic multicellularity, with the formation of differentiated cell types, including normal photosynthetic cells and specialized nitrogen-fixing cells called heterocysts. The question of how heterocysts communicate and exchange metabolites with other cells in the filament is key to understanding this form of bacterial multicellularity. Here we provide the first information on the intercellular exchange of a physiologically important molecule, sucrose. We show that a fluorescent sucrose analog can be imported into the Anabaena cytoplasm by a sucrose import system. Once in the cytoplasm, it is rapidly and reversibly exchanged among all of the cells in the filament by diffusion across the septal junctions. Photosynthetically produced sucrose likely follows the same route from cytoplasm to cytoplasm. We identify some of the septal proteins involved in sucrose exchange, and our results indicate that these proteins form structures functionally analogous to metazoan gap junctions.


Assuntos
Anabaena/metabolismo , Esculina/metabolismo , Anabaena/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citoplasma/química , Difusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...