RESUMO
The hardware for data archiving has expanded capacities for digital storage enormously in the past decade or more. The IUCr evaluated the costs and benefits of this within an official working group which advised that raw data archiving would allow ground truth reproducibility in published studies. Consultations of the IUCr's Commissions ensued via a newly constituted standing advisory committee, the Committee on Data. At all stages, the IUCr financed workshops to facilitate community discussions and possible methods of raw data archiving implementation. The recent launch of the IUCrData journal's Raw Data Letters is a milestone in the implementation of raw data archiving beyond the currently published studies: it includes diffraction patterns that have not been fully interpreted, if at all. The IUCr 75th Congress in Melbourne included a workshop on raw data reuse, discussing the successes and ongoing challenges of raw data reuse. This article charts the efforts of the IUCr to facilitate discussions and plans relating to raw data archiving and reuse within the various communities of crystallography, diffraction and scattering.
RESUMO
Highly fluorinated cuprate Ruddlesden-Popper oxyfluorides La2Cu0.8Ni0.2O3F2 and La2CuO3F2 were obtained by topochemical reaction between poly(vinylidene fluoride) (PVDF) and the corresponding oxides La2Cu0.8Ni0.2O4 and La2CuO4 prepared by citrate-based soft chemistry synthesis. The crystal structures of both oxyfluorides were investigated by powder diffraction techniques. The structure of La2Cu0.8Ni0.2O3F2 was solved based on combined neutron and X-ray powder diffraction. It crystallizes in a new monoclinic distorted version [C2/c a = 13.1880(3) Å, b = 5.7244(1) Å, c = 5.6007(1) Å, and ß = 90.85(1)°] of the anionic ordered structure lately reported for La2NiO3F2. For La2CuO3F2, an even less symmetrical triclinic structure was derived from X-ray powder diffraction data [P1Ì a = 5.6180(5) Å, b = 5.7316(6) Å, c = 7.1978(9) Å, α = 113.32(1)°, ß = 90.89(9)°, and γ = 90.16(11)°]. For both compounds, an additional tilt component of the partially Jahn-Teller elongated (Cu,Ni)O4F2 octahedra was found as the origin for the lowered symmetry. The formation reaction of La2CuO3F2 was studied by in situ XRD measurements. In these investigations, two new reaction intermediates were identified. The magnetic properties of both oxyfluorides La2Cu0.8Ni0.2O3F2 and La2CuO3F2 were characterized by field- and temperature-dependent measurements. An antiferromagnetic ordering with TN = 240 K was found for La2Cu0.8Ni0.2O3F2. In La2CuO3F2, additional weak ferrimagnetism was observed, resulting in a pronounced hysteresis but a weak saturation moment, which was attributed to result from a canted antiferromagnetic spin arrangement.
RESUMO
Hexagonal perovskite-related oxides have garnered a great deal of research interest because of their high oxide-ion conductivity at intermediate temperatures, with Ba7Nb4MoO20 being a notable example. However, concomitant proton conduction in Ba7Nb4MoO20 may cause a decrease in power efficiency when used as the electrolyte in conventional solid oxide fuel cells. Here, through investigations of the transport and structural properties of Ba7Nb4-xWxMoO20+x/2 (x = 0-0.25), we show that the aliovalent substitution of Nb5+ by W6+ not only increases the oxide-ion conductivity but also dramatically lowers proton conductivity. The highest conductivity is achieved for x = 0.15 composition, with 2.2 × 10-2 S cm-1 at 600 °C, 2.2 times higher than that of pristine Ba7Nb4MoO20. The proton transport number of Ba7Nb3.85W0.15MoO20.075 is smaller compared with Ba7Nb4MoO20, Ba7Nb3.9Mo1.1O20.05, and Ba7Ta3.7Mo1.3O20.15. The structure analyses of neutron diffraction data of Ba7Nb3.85W0.15MoO20.075 at 25 and 800 °C reveal that the aliovalent W6+ doping introduces interstitial oxide ions in the intrinsically oxygen-deficient c' layers, thereby simultaneously increasing the carrier concentration for oxide-ion conduction and decreasing oxygen vacancies responsible for dissociative absorption of water. Neutron scattering length density distribution was examined using the maximum-entropy method and neutron diffraction data at 800 °C, which indicates the interstitialcy oxide-ion diffusion in the c' layers of Ba7Nb3.85W0.15MoO20.075. Ba7Nb3.85W0.15MoO20.075 exhibits extremely high chemical and electrical stability in the wide oxygen partial pressure P(O2) region [ex. 10-23 ≤ P(O2) ≤ 1 atm at 903 °C]. The present results offer a strategy for developing pure oxide-ion conducting hexagonal perovskite-related oxides for possible industrial applications.
RESUMO
Solid oxide-ion conductors are crucial for enabling clean and efficient energy devices such as solid oxide fuel cells. Hexagonal perovskite-related oxides have been placed at the forefront of high-performance oxide-ion conductors, with Ba7 Nb4- x Mo1+ x O20+ x /2 (x = 0-0.1) being an archetypal example. Herein, high oxide-ion conductivity and stability under reducing conditions in Ba7 Ta3.7 Mo1.3 O20.15 are reported by investigating the solid solutions Ba7 Ta4- x Mo1+ x O20+ x /2 (x = 0.2-0.7). Neutron diffraction indicates a large number of interstitial oxide ions in Ba7 Ta3.7 Mo1.3 O20.15 , leading to a high level of oxide-ion conductivity (e.g., 1.08 × 10-3 S cm-1 at 377 °C). The conductivity of Ba7 Ta3.7 Mo1.3 O20.15 is higher than that of Ba7 Nb4 MoO20 and conventional yttria-stabilized zirconia. In contrast to Ba7 Nb4- x Mo1+ x O20+ x /2 (x = 0-0.1), the oxide-ion conduction in Ba7 Ta3.7 Mo1.3 O20.15 is dominant even in highly reducing atmospheres (e.g., oxygen partial pressure of 1.6 × 10-24 atm at 909 °C). From structural analyses of the synchrotron X-ray diffraction data for Ba7 Ta3.7 Mo1.3 O20.15 , contrasting X-ray scattering powers of Ta5+ and Mo6+ allow identification of the preferential occupation of Mo6+ adjacent to the intrinsically oxygen-deficient layers, as supported by DFT calculations. The high conductivity and chemical and electrical stability in Ba7 Ta3.7 Mo1.3 O20.15 provide a strategy for the development of solid electrolytes based on hexagonal perovskite-related oxides.
RESUMO
The mechanism of ionic conduction in Ca-doped lanthanum oxychloride (LaOCl) was investigated using first-principles calculations based on density functional theory. The calculations of the point defect formation energies suggest that Cl- ion vacancies and substituted Ca2+ ions at La sites were dominant point defects. Although the migration energy of an O2- ion is 0.95 eV, the migration energy of a Cl- ion was calculated to be 0.44 eV, which is consistent with the reported experimental value. These results imply that the main carrier in Ca-doped LaOCl is Cl- ions and ionic conduction occurs by a Cl- ion vacancy mechanism.
RESUMO
In the light of NASA's New Horizons mission, the solid-phase behaviour of methane and nitrogen has been re-examined and the thermal expansion coefficients of both materials have been determined over their whole solid temperature range for the first time. Neutron diffraction results indicate that the symmetric Pa 3 space group is the best description for the α-nitrogen structure, rather than the long-accepted P213. Furthermore, it is also observed that ß-nitrogen and methane phase I show changes in texture on warming, indicating grain growth.
RESUMO
Measurements of mass attenuation coefficients and X-ray absorption fine structure (XAFS) of zinc selenide (ZnSe) are reported to accuracies typically better than 0.13%. The high accuracy of the results presented here is due to our successful implementation of the X-ray extended range technique, a relatively new methodology, which can be set up on most synchrotron X-ray beamlines. 561 attenuation coefficients were recorded in the energy range 6.8-15â keV with measurements concentrated at the zinc and selenium pre-edge, near-edge and fine-structure absorption edge regions. This accuracy yielded detailed nanostructural analysis of room-temperature ZnSe with full uncertainty propagation. Bond lengths, accurate to 0.003â Å to 0.009â Å, or 0.1% to 0.3%, are plausible and physical. Small variation from a crystalline structure suggests local dynamic motion beyond that of a standard crystal lattice, noting that XAFS is sensitive to dynamic correlated motion. The results obtained in this work are the most accurate to date with comparisons with theoretically determined values of the attenuation showing discrepancies from literature theory of up to 4%, motivating further investigation into the origin of such discrepancies.
RESUMO
For the development of proton-based electrolytes, high proton conductivity at intermediate temperatures (300-600 °C) is crucial, but the available materials have been confined to a limited number of the structure families, such as cubic perovskites. Herein, we report Ba5Er2Al2ZrO13, a hexagonal perovskite-related oxide, as a new class of proton conductors exhibiting higher conductivities than 10-3 S cm-1 between 300 and 1200 °C. The protons as charge carriers are found to exist in the inherently oxygen-deficient h' layer of Ba5Er2Al2ZrO13, which are supported by Rietveld analysis of neutron-diffraction data, bond-valence-based energy calculations, and thermogravimetric analysis. Our discovery of a new structure family of proton conductors with the inherently oxygen-deficient h' layer offers a strategy in designing superior proton conductors based on hexagonal perovskite-related oxides.
RESUMO
Neutron powder diffraction experiments were carried out on the magnetoelectric compound series (Co4-x Mn x )Nb2O9 (x = 0, 1, 2, 3, 3.5, 3.9, 3.95 and 4) from base temperature to above their Néel temperatures. Their magnetic structures were analysed by using the irreducible representation analysis and Rietveld refinement method. Similar to Co4Nb2O9, the compounds with x ⩽ 3.9 have noncollinear in-plane magnetic structures (Γ6) with magnetic moments lying purely in the ab plane with certain canting angles. Mn4Nb2O9 has a collinear antiferromagnetic structure (Γ2) with magnetic moments aligning along the c axis. The compound of x = 3.95 shows two magnetic phases in the magnetization, which was confirmed to have the Γ2 magnetic structure above 60 K and develop a second Γ6 local phase in addition to the main Γ2 phase due to doping. This study indicates 2.5 at% Co2+ doping is sufficient to alter the collinear easy-axis magnetic structure of Mn4Nb2O9 into the noncollinear easy-plane magnetic structure, which is attributed to the large easy-plane anisotropy of Co2+ and relative small Ising-like anisotropy of Mn2+. The doping effects on the Néel temperature and occupancy are also discussed.
RESUMO
This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO2 in two materials, and as a mixture of UO2, U3O8 and an intermediate species U3O7 in the third material.
RESUMO
The structures across the Sr0.8Ti0.6-xZrxNb0.4O3, 0 ≤ x ≤ 0.6, defect perovskite series were investigated using complementary synchrotron X-ray and neutron powder diffraction data. The locations of second order compositional and temperature dependent phase transitions between the high symmetry cubic Pm3[combining macron]m phase and the lower symmetry tetragonal I4/mcm phase were determined. Deviation of the oxygen x coordinate from the high symmetry value and the B-O-B bond angle from 180° as well as the tetragonal strain squared were each found to be suitable order parameters to monitor the transitions. Tolerance factor calculations confirmed that these A-site deficient perovskites retain a higher symmetry to a lower value than their fully occupied counterparts. Therefore, adjusting vacancy concentrations can be employed as a general strategy to design compounds with specifically tailored phase transition temperatures.
RESUMO
The crystal structures of the series of ordered double perovskites Ba(2-x)Sr(x)YIrO6 (0 ≤ x ≤ 2) were refined using a combination of high-resolution synchrotron X-ray and high-intensity neutron diffraction data. The materials displayed a sequence of structures Fm3Ì m(a(0)a(0)a(0)) (x = 0.6)--> I4/m(a(0)a(0)c(-)) (x = 1.0)--> I2/m(a(-)a(-)c(0)) (x = 1.4)--> P2(1)/n(a(-)a(-)c(+)) associated with increased tilting of the corner-sharing octahedra induced by increasing amount of the smaller Sr cation present. A similar sequence of transitions was induced by heating selected samples. Magnetic susceptibility measurements between 2 and 300 K showed no evidence for long-range magnetic ordering, an observation that was supported by neutron diffraction measurements, and rather strong spin-orbit coupling results in a Jeff = 0 ground state.
RESUMO
LiMnTiO4 was prepared through solid-state syntheses employing different heating and cooling regimes. Synchrotron X-ray and neutron powder diffraction data found quenched LiMnTiO4 to form as single phase disordered spinel (space group Fd3Ì m), whereas slowly cooled LiMnTiO4 underwent partial phase transition from Fd3Ì m to P4332. The phase behavior of quenched and slowly cooled LiMnTiO4 was confirmed through variable-temperature synchrotron X-ray and neutron powder diffraction measurements. The distribution of Li between tetrahedral and octahedral sites was determined from diffraction data. Analysis of the Mn/Ti distribution in addition required Mn and Ti K-edge X-ray absorption near-edge structure spectra. These revealed the presence of Mn(3+) in primarily octahedral and Ti(4+) in octahedral and tetrahedral environments, with very slight variations depending on the synthesis conditions. Magnetic measurements indicated the dominance of antiferromagnetic interactions in both the slowly cooled and quenched samples below 4.5 K.
RESUMO
K2NiF4-type LaSrAlO4 and Sr2TiO4 exhibit anisotropic and isotropic thermal expansion, respectively; however, their structural origin is unknown. To address this unresolved issue, the crystal structure and thermal expansion of LaSrAlO4 and Sr2TiO4 have been investigated through high-temperature neutron and synchrotron X-ray powder diffraction experiments and ab initio electronic calculations. The thermal expansion coefficient (TEC) along the c-axis (αc) being higher than that along the a-axis (αa) of LaSrAlO4 [αc = 1.882(4)αa] is mainly ascribed to the TEC of the interatomic distance between Al and apical oxygen O2 α(Al-O2) being higher than that between Al and equatorial oxygen O1 α(Al-O1) [α(Al-O2) = 2.41(18)α(Al-O1)]. The higher α(Al-O2) is attributed to the Al-O2 bond being longer and weaker than the Al-O1 bond. Thus, the minimum electron density and bond valence of the Al-O2 bond are lower than those of the Al-O1 bond. For Sr2TiO4, the Ti-O2 interatomic distance, d(Ti-O2), is equal to that of Ti-O1, d(Ti-O1) [d(Ti-O2) = 1.0194(15)d(Ti-O1)], relative to LaSrAlO4 [d(Al-O2) = 1.0932(9)d(Al-O1)]. Therefore, the bond valence and minimum electron density of the Ti-O2 bond are nearly equal to those of the Ti-O1 bond, leading to isotropic thermal expansion of Sr2TiO4 than LaSrAlO4. These results indicate that the anisotropic thermal expansion of K2NiF4-type oxides, A2BO4, is strongly influenced by the anisotropy of B-O chemical bonds. The present study suggests that due to the higher ratio of interatomic distance d(B-O2)/d(B-O1) of A2(2.5+)B(3+)O4 compared with A2(2+)B(4+)O4, A2(2.5+)B(3+)O4 compounds have higher α(B-O2), and A2(2+)B(4+)O4 materials exhibit smaller α(B-O2), leading to the anisotropic thermal expansion of A2(2.5+)B(3+)O4 and isotropic thermal expansion of A2(2+)B(4+)O4. The "true" thermal expansion without the chemical expansion of A2BO4 is higher than that of ABO3 with a similar composition.
RESUMO
The nuclear and magnetic structures and properties of Sr0.65Pr0.35-xCexMnO3 (0.00 ≤ x ≤ 0.35) were investigated using a combination of synchrotron x-ray and neutron powder diffraction, along with magnetic and x-ray absorption near edge structure measurements. At room temperature, doping with Ce results in a transition from a tetragonal structure in I4/mcm to an orthorhombic one in Imma associated with the loss of long range orbital ordering. At low temperatures, we observe the formation of an orthorhombic Fmmm phase. XANES measurements demonstrate that the Ce exists as a mixture of Ce(3+) and Ce(4+).
RESUMO
The structure of TcCo(2)O(4) has been determined using a combination of synchrotron X-ray and neutron powder diffraction methods. It has an inverse spinel structure where the Tc occupies the octahedral sites. Both the refined Tc-O distance and X-ray absorption spectra suggest the Tc is predominantly trivalent.
RESUMO
The effect of cation valency on the complex structures of divalent and trivalent transition metal gallates has been examined using a combination of neutron and synchrotron X-ray powder diffraction, single-crystal X-ray diffraction and XANES spectroscopy. In the divalent frameworks, M(C(7)H(4)O(5))·2H(2)O (M = Mn, Co and Ni), it was found that charge balance was achieved via the presence of protons on the meta-hydroxyl groups. It was also established that these compounds undergo a discontinuous phase transition at lower temperatures, which is driven by the position of the extra-framework water molecules in these materials. By contrast, in the trivalent Fe gallate, Fe(C(7)H(3)O(5))·2H(2)O, it was found that the stronger bonding between the meta-hydroxy oxygen and the cations leads to a weakening of the bond between this oxygen and its proton. This is turn is thought to lead to stronger hydrogen bonding with the extra-framework water. The lattice water is disordered in the Fe(III) case, which prevents the phase transition found in the M(II) gallates. Refinement against the neutron diffraction patterns also revealed that the relatively mild microwave synthesis of gallate frameworks in D(2)O led to an extensive deuteration of the ortho-hydrogen sites on the aromatic ring, which may suggest a more versatile method of deuterating aromatic organics. The antiferromagnetic structure of Co gallate has also been determined.
RESUMO
Single-crystal synchrotron X-ray diffraction reveals partial structural disorder of Tb atoms at 293 K in flux-grown Tb(3)RuO(7) (triterbium ruthenium heptaoxide) crystals. The structure is noncentrosymmetric and composed of infinite single chains of corner-linked RuO(6) octahedra embedded in a Tb(3)O matrix. Two Tb atom sites out of the six crystallographically independent Tb sites are split into two positions. The split sites are separated by approximately 0.3-0.4 Angstrom, with slightly different coordination environments. The RuO(6) octahedra in the present P2(1)nb modification have two tilt systems about the a and c axes, in contrast with a single tilt about c in the other Cmcm modifications of Ln(3)RuO(7) (Ln = lanthanoid elements).