Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
2.
Eur J Immunol ; 50(12): 1998-2012, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33073359

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. Understanding the immune response that provides specific immunity but may also lead to immunopathology is crucial for the design of potential preventive and therapeutic strategies. Here, we characterized and quantified SARS-CoV-2-specific immune responses in patients with different clinical courses. Compared to individuals with a mild clinical presentation, CD4+ T-cell responses were qualitatively impaired in critically ill patients. Strikingly, however, in these patients the specific IgG antibody response was remarkably strong. Furthermore, in these critically ill patients, a massive influx of circulating T cells into the lungs was observed, overwhelming the local T-cell compartment, and indicative of vascular leakage. The observed disparate T- and B-cell responses could be indicative of a deregulated immune response in critically ill COVID-19 patients.

3.
Crit Care ; 24(1): 628, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33126902

RESUMO

BACKGROUND: Expiratory muscle weakness leads to difficult ventilator weaning. Maintaining their activity with functional electrical stimulation (FES) may improve outcome. We studied feasibility of breath-synchronized expiratory population muscle FES in a mixed ICU population ("Holland study") and pooled data with our previous work ("Australian study") to estimate potential clinical effects in a larger group. METHODS: Holland: Patients with a contractile response to FES received active or sham expiratory muscle FES (30 min, twice daily, 5 days/week until weaned). Main endpoints were feasibility (e.g., patient recruitment, treatment compliance, stimulation intensity) and safety. Pooled: Data on respiratory muscle thickness and ventilation duration from the Holland and Australian studies were combined (N = 40) in order to estimate potential effect size. Plasma cytokines (day 0, 3) were analyzed to study the effects of FES on systemic inflammation. RESULTS: Holland: A total of 272 sessions were performed (active/sham: 169/103) in 20 patients (N = active/sham: 10/10) with a total treatment compliance rate of 91.1%. No FES-related serious adverse events were reported. Pooled: On day 3, there was a between-group difference (N = active/sham: 7/12) in total abdominal expiratory muscle thickness favoring the active group [treatment difference (95% confidence interval); 2.25 (0.34, 4.16) mm, P = 0.02] but not on day 5. Plasma cytokine levels indicated that early FES did not induce systemic inflammation. Using a survival analysis approach for the total study population, median ventilation duration and ICU length of stay were 10 versus 52 (P = 0.07), and 12 versus 54 (P = 0.03) days for the active versus sham group. Median ventilation duration of patients that were successfully extubated was 8.5 [5.6-12.2] versus 10.5 [5.3-25.6] days (P = 0.60) for the active (N = 16) versus sham (N = 10) group, and median ICU length of stay was 10.5 [8.0-14.5] versus 14.0 [9.0-19.5] days (P = 0.36) for those active (N = 16) versus sham (N = 8) patients that were extubated and discharged alive from the ICU. During ICU stay, 3/20 patients died in the active group versus 8/20 in the sham group (P = 0.16). CONCLUSION: Expiratory muscle FES is feasible in selected ICU patients and might be a promising technique within a respiratory muscle-protective ventilation strategy. The next step is to study the effects on weaning and ventilator liberation outcome. TRIAL REGISTRATION: ClinicalTrials.gov, ID NCT03453944. Registered 05 March 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03453944 .

4.
J Intensive Care Med ; : 885066620965167, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33034231

RESUMO

PURPOSE: Purpose of this report is to describe the feasibility of lingual pulse oximetry and lingual near-infrared spectroscopy (NIRS) in a COVID-19 patient to assess lingual tissue viability after several days of mechanical ventilation in the prone position. MATERIALS & METHODS: In a COVID-19 ICU-patient, the tongue became grotesquely swollen, hardened and protruding from the oral cavity after 20 h of mechanical ventilation uninterrupted in the prone position. To assess the doubtful viability of the tongue, pulse-oximetric hemoglobin O2-saturation (SpO2; Nellcor, OxiMax MAX-NI, Covidien, MA, USA) and NIRS-based, regional tissue O2-saturation measurements (rSO2; SenSmart, Nonin, MN, USA) were performed at the tongue. RESULTS: At the tongue, regular pulse-oximetric waveforms with a pulse-oximetric hemoglobin O2-saturation (SpO2) of 88% were recorded, i.e. only slightly lower than the SpO2 reading at the extremities at that time (90%). Lingual NIRS-based rSO2 measurements yielded stable tissue rSO2-values of 76-78%, i.e. values expected also in other adequately perfused and oxygenated (muscle-) tissues. CONCLUSION: Despite the alarming, clinical finding of a grotesquely swollen, rubber-hard tongue and clinical concerns on the adequacy of the tongue perfusion and oxygenation, our measurements of both arterial pulsatility (SpO2) and NIRS-based tissue oxygenation (rSO2) suggested adequate perfusion and oxygenation of the tongue, rendering non-vitality of the tongue, e.g. by lingual venous thrombosis, unlikely. To our knowledge, this is the first clinical report of lingual rSO2 measurement.

5.
Eur Respir Rev ; 29(157)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33020069

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome-coronavirus-2. Consensus suggestions can standardise care, thereby improving outcomes and facilitating future research. METHODS: An International Task Force was composed and agreement regarding courses of action was measured using the Convergence of Opinion on Recommendations and Evidence (CORE) process. 70% agreement was necessary to make a consensus suggestion. RESULTS: The Task Force made consensus suggestions to treat patients with acute COVID-19 pneumonia with remdesivir and dexamethasone but suggested against hydroxychloroquine except in the context of a clinical trial; these are revisions of prior suggestions resulting from the interim publication of several randomised trials. It also suggested that COVID-19 patients with a venous thromboembolic event be treated with therapeutic anticoagulant therapy for 3 months. The Task Force was unable to reach sufficient agreement to yield consensus suggestions for the post-hospital care of COVID-19 survivors. The Task Force fell one vote shy of suggesting routine screening for depression, anxiety and post-traumatic stress disorder. CONCLUSIONS: The Task Force addressed questions related to pharmacotherapy in patients with COVID-19 and the post-hospital care of survivors, yielding several consensus suggestions. Management options for which there is insufficient agreement to formulate a suggestion represent research priorities.


Assuntos
Comitês Consultivos/organização & administração , Betacoronavirus , Consenso , Infecções por Coronavirus/epidemiologia , Cooperação Internacional , Pneumonia Viral/epidemiologia , Pneumologia/normas , Sociedades Médicas , Europa (Continente) , Humanos , Pandemias , Estados Unidos
6.
Lancet Microbe ; 1(7): e290-e299, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33015653

RESUMO

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets multiple organs and causes severe coagulopathy. Histopathological organ changes might not only be attributable to a direct virus-induced effect, but also the immune response. The aims of this study were to assess the duration of viral presence, identify the extent of inflammatory response, and investigate the underlying cause of coagulopathy. Methods: This prospective autopsy cohort study was done at Amsterdam University Medical Centers (UMC), the Netherlands. With informed consent from relatives, full body autopsy was done on 21 patients with COVID-19 for whom autopsy was requested between March 9 and May 18, 2020. In addition to histopathological evaluation of organ damage, the presence of SARS-CoV-2 nucleocapsid protein and the composition of the immune infiltrate and thrombi were assessed, and all were linked to disease course. Findings: Our cohort (n=21) included 16 (76%) men, and median age was 68 years (range 41-78). Median disease course (time from onset of symptoms to death) was 22 days (range 5-44 days). In 11 patients tested for SARS-CoV-2 tropism, SARS-CoV-2 infected cells were present in multiple organs, most abundantly in the lungs, but presence in the lungs became sporadic with increased disease course. Other SARS-CoV-2-positive organs included the upper respiratory tract, heart, kidneys, and gastrointestinal tract. In histological analyses of organs (sampled from nine to 21 patients per organ), an extensive inflammatory response was present in the lungs, heart, liver, kidneys, and brain. In the brain, extensive inflammation was seen in the olfactory bulbs and medulla oblongata. Thrombi and neutrophilic plugs were present in the lungs, heart, kidneys, liver, spleen, and brain and were most frequently observed late in the disease course (15 patients with thrombi, median disease course 22 days [5-44]; ten patients with neutrophilic plugs, 21 days [5-44]). Neutrophilic plugs were observed in two forms: solely composed of neutrophils with neutrophil extracellular traps (NETs), or as aggregates of NETs and platelets.. Interpretation: In patients with lethal COVID-19, an extensive systemic inflammatory response was present, with a continued presence of neutrophils and NETs. However, SARS-CoV-2-infected cells were only sporadically present at late stages of COVID-19. This suggests a maladaptive immune response and substantiates the evidence for immunomodulation as a target in the treatment of severe COVID-19. Funding: Amsterdam UMC Corona Research Fund.

8.
Ann Intensive Care ; 10(1): 115, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32852710

RESUMO

BACKGROUND: Critical illness has detrimental effects on the diaphragm, but the impact of critical illness on other major muscles of the respiratory pump has been largely neglected. This study aimed to determine the impact of critical illness on the most important muscles of the respiratory muscle pump, especially on the expiratory muscles in children during mechanical ventilation. In addition, the correlation between changes in thickness of the expiratory muscles and the diaphragm was assessed. METHODS: This longitudinal observational cohort study performed at a tertiary pediatric intensive care unit included 34 mechanical ventilated children (> 1 month- < 18 years). Thickness of the diaphragm and expiratory muscles (obliquus interna, obliquus externa, transversus abdominis and rectus abdominis) was assessed daily using ultrasound. Contractile activity was estimated from muscle thickening fraction during the respiratory cycle. RESULTS: Over the first 4 days, both diaphragm and expiratory muscles thickness decreased (> 10%) in 44% of the children. Diaphragm and expiratory muscle thickness increased (> 10%) in 26% and 20% of the children, respectively. No correlation was found between contractile activity of the muscles and the development of atrophy. Furthermore, no correlation was found between changes in thickness of the diaphragm and the expiratory muscles (P = 0.537). Decrease in expiratory muscle thickness was significantly higher in patients failing extubation compared to successful extubation (- 34% vs - 4%, P = 0.014). CONCLUSIONS: Changes in diaphragm and expiratory muscles thickness develop rapidly after the initiation of mechanical ventilation. Changes in thickness of the diaphragm and expiratory muscles were not significantly correlated. These data provide a unique insight in the effects of critical illness on the respiratory muscle pump in children.

9.
J Clin Monit Comput ; 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632667

RESUMO

OBJECTIVE: Objective of this case report is to draw attention to a less known thrombotic complication associated with COVID-19, i.e., thrombosis of both radial arteries, with possible (long-term) consequences. THE CASE: In our COVID-19 ICU a 49-year-old male patient was admitted, with past medical history of obesity, smoking and diabetes, but no reported atherosclerotic complications. The patient had been admitted with severe hypoxemia and multiple pulmonary emboli were CT-confirmed. ICU-treatment included mechanical ventilation and therapeutic anticoagulation. Preparing the insertion of a new radial artery catheter for invasive blood pressure measurement and blood sampling, we detected that both radial arteries were non-pulsating and occluded: (a) Sonography showed the typical anatomical localization of both radial and ulnar arteries. However, Doppler-derived flow-signals could only be obtained from the ulnar arteries. (b) To test collateral arterial supply of the hand, a pulse-oximeter was placed on the index finger. Thereafter, the ulnar artery at the wrist was compressed. This compression caused an immediate loss of the finger's pulse-oximetry perfusion signal. The effect was reversible upon release of the ulnar artery. (c) To test for collateral perfusion undetectable by pulse-oximetry, we measured regional oxygen saturation (rSO2) of the thenar muscle by near-infrared spectroscopy (NIRS). Confirming our findings above, ulnar arterial compression demonstrated that thenar rSO2 was dependent on ulnar artery flow. The described development of bilateral radial artery occlusion in a relatively young and therapeutically anticoagulated patient with no history of atherosclerosis was unexpected. CONCLUSIONS: Since COVID-19 patients are at increased risk for arterial occlusion, it appears advisable to meticulously check for adequacy of collateral (hand-) perfusion, avoiding the harm of hand ischemia if interventions (e.g., catheterizations) at the radial or ulnar artery are intended.

10.
ERJ Open Res ; 6(2)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32665947

RESUMO

With a modified circuit, it is feasible to ventilate two patients with one ventilator over a relevant range of compliances. Adding inspiratory resistance allows individual titration of tidal volume, and incorporating one-way valves prevents pendelluft. https://bit.ly/3ex8SYP.

11.
J Cardiovasc Pharmacol ; 76(1): 4-22, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32639325

RESUMO

Levosimendan was first approved for clinical use in 2000, when authorization was granted by Swedish regulatory authorities for the hemodynamic stabilization of patients with acutely decompensated chronic heart failure (HF). In the ensuing 20 years, this distinctive inodilator, which enhances cardiac contractility through calcium sensitization and promotes vasodilatation through the opening of adenosine triphosphate-dependent potassium channels on vascular smooth muscle cells, has been approved in more than 60 jurisdictions, including most of the countries of the European Union and Latin America. Areas of clinical application have expanded considerably and now include cardiogenic shock, takotsubo cardiomyopathy, advanced HF, right ventricular failure, pulmonary hypertension, cardiac surgery, critical care, and emergency medicine. Levosimendan is currently in active clinical evaluation in the United States. Levosimendan in IV formulation is being used as a research tool in the exploration of a wide range of cardiac and noncardiac disease states. A levosimendan oral form is at present under evaluation in the management of amyotrophic lateral sclerosis. To mark the 20 years since the advent of levosimendan in clinical use, 51 experts from 23 European countries (Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Poland, Portugal, Russia, Slovenia, Spain, Sweden, Switzerland, the United Kingdom, and Ukraine) contributed to this essay, which evaluates one of the relatively few drugs to have been successfully introduced into the acute HF arena in recent times and charts a possible development trajectory for the next 20 years.

13.
Crit Care ; 24(1): 104, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32204710

RESUMO

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2020. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2020. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.


Assuntos
Insuficiência Respiratória/terapia , Fenômenos Fisiológicos Respiratórios , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/tendências , Insuficiência Respiratória/fisiopatologia
14.
Anesthesiology ; 132(4): 781-794, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31977519

RESUMO

BACKGROUND: Mechanical complications arising after central venous catheter placement are mostly malposition or pneumothorax. To date, to confirm correct position and detect pneumothorax, chest x-ray film has been the reference standard, while ultrasound might be an accurate alternative. The aim of this study was to evaluate diagnostic accuracy of ultrasound to detect central venous catheter malposition and pneumothorax. METHODS: This was a prospective, multicenter, diagnostic accuracy study conducted at the intensive care unit and postanesthesia care unit. Adult patients who underwent central venous catheterization of the internal jugular vein or subclavian vein were included. Index test consisted of venous, cardiac, and lung ultrasound. Standard reference test was chest x-ray film. Primary outcome was diagnostic accuracy of ultrasound to detect malposition and pneumothorax; for malposition, sensitivity, specificity, and other accuracy parameters were estimated. For pneumothorax, because chest x-ray film is an inaccurate reference standard to diagnose it, agreement and Cohen's κ-coefficient were determined. Secondary outcomes were accuracy of ultrasound to detect clinically relevant complications and feasibility of ultrasound. RESULTS: In total, 758 central venous catheterizations were included. Malposition occurred in 23 (3.3%) out of 688 cases included in the analysis. Ultrasound sensitivity was 0.70 (95% CI, 0.49 to 0.86) and specificity 0.99 (95% CI, 0.98 to 1.00). Pneumothorax occurred in 5 (0.7%) to 11 (1.5%) out of 756 cases according to chest x-ray film and ultrasound, respectively. In 748 out of 756 cases (98.9%), there was agreement between ultrasound and chest x-ray film with a Cohen's κ-coefficient of 0.50 (95% CI, 0.19 to 0.80). CONCLUSIONS: This multicenter study shows that the complication rate of central venous catheterization is low and that ultrasound produces a moderate sensitivity and high specificity to detect malposition. There is moderate agreement with chest x-ray film for pneumothorax. In conclusion, ultrasound is an accurate diagnostic modality to detect malposition and pneumothorax.


Assuntos
Cateterismo Venoso Central/efeitos adversos , Cateterismo Venoso Central/normas , Cateteres Venosos Centrais/efeitos adversos , Cateteres Venosos Centrais/normas , Ultrassonografia de Intervenção/métodos , Ultrassonografia de Intervenção/normas , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
15.
J Cardiovasc Pharmacol ; 74(5): 389-399, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31730560

RESUMO

Levosimendan is a calcium sensitizer that promotes myocyte contractility through its calcium-dependent interaction with cardiac troponin C. Administered intravenously, it has been used for nearly 2 decades to treat acute and advanced heart failure and to support the heart function in various therapy settings characterized by low cardiac output. Effects of levosimendan on noncardiac muscle suggest a possible new application in the treatment of people with amyotrophic lateral sclerosis (ALS), a neuromuscular disorder characterized by progressive weakness, and eventual paralysis. Previous attempts to improve the muscle response in ALS patients and thereby maintain respiratory function and delay progression of disability have produced some mixed results. Continuing this line of investigation, levosimendan has been shown to enhance in vitro the contractility of the diaphragm muscle fibers of non-ALS patients and to improve in vivo diaphragm neuromuscular efficiency in healthy subjects. Possible positive effects on respiratory function in people with ALS were seen in an exploratory phase 2 study, and a phase 3 clinical trial is now underway to evaluate the potential benefit of an oral form of levosimendan on both respiratory and overall functions in patients with ALS. Here, we will review the various known pharmacologic effects of levosimendan, considering their relevance to people living with ALS.


Assuntos
Esclerose Amiotrófica Lateral/tratamento farmacológico , Diafragma/inervação , Neurônios Motores/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Fármacos Neuromusculares/uso terapêutico , Respiração/efeitos dos fármacos , Insuficiência Respiratória/tratamento farmacológico , Simendana/uso terapêutico , Esclerose Amiotrófica Lateral/patologia , Esclerose Amiotrófica Lateral/fisiopatologia , Animais , Progressão da Doença , Humanos , Neurônios Motores/patologia , Recuperação de Função Fisiológica , Insuficiência Respiratória/patologia , Insuficiência Respiratória/fisiopatologia , Resultado do Tratamento
16.
Crit Care ; 23(1): 261, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340846

RESUMO

BACKGROUND: For every day a person is dependent on mechanical ventilation, respiratory and cardiac complications increase, quality of life decreases and costs increase by > $USD 1500. Interventions that improve respiratory muscle function during mechanical ventilation can reduce ventilation duration. The aim of this pilot study was to assess the feasibility of employing an abdominal functional electrical stimulation (abdominal FES) training program with critically ill mechanically ventilated patients. We also investigated the effect of abdominal FES on respiratory muscle atrophy, mechanical ventilation duration and intensive care unit (ICU) length of stay. METHODS: Twenty critically ill mechanically ventilated participants were recruited over a 6-month period from one metropolitan teaching hospital. They were randomly assigned to receive active or sham (control) abdominal FES for 30 min, twice per day, 5 days per week, until ICU discharge. Feasibility was assessed through participant compliance to stimulation sessions. Abdominal and diaphragm muscle thickness were measured using ultrasound 3 times in the first week, and weekly thereafter by a blinded assessor. Respiratory function was recorded when the participant could first breathe independently and at ICU discharge, with ventilation duration and ICU length of stay also recorded at ICU discharge by a blinded assessor. RESULTS: Fourteen of 20 participants survived to ICU discharge (8, intervention; 6, control). One control was transferred before extubation, while one withdrew consent and one was withdrawn for staff safety after extubation. Median compliance to stimulation sessions was 92.1% (IQR 5.77%) in the intervention group, and 97.2% (IQR 7.40%) in the control group (p = 0.384). While this pilot study is not adequately powered to make an accurate statistical conclusion, there appeared to be no between-group thickness changes of the rectus abdominis (p = 0.099 at day 3), diaphragm (p = 0.652 at day 3) or combined lateral abdominal muscles (p = 0.074 at day 3). However, ICU length of stay (p = 0.011) and ventilation duration (p = 0.039) appeared to be shorter in the intervention compared to the control group. CONCLUSIONS: Our compliance rates demonstrate the feasibility of using abdominal FES with critically ill mechanically ventilated patients. While abdominal FES did not lead to differences in abdominal muscle or diaphragm thickness, it may be an effective method to reduce ventilation duration and ICU length of stay in this patient group. A fully powered study into this effect is warranted. TRIAL REGISTRATION: The Australian New Zealand Clinical Trials Registry, ACTRN12617001180303. Registered 9 August 2017.


Assuntos
Estimulação Elétrica/métodos , Desmame do Respirador/instrumentação , APACHE , Adulto , Idoso , Estado Terminal/epidemiologia , Estado Terminal/terapia , Método Duplo-Cego , Estimulação Elétrica/instrumentação , Feminino , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Reto do Abdome/irrigação sanguínea , Reto do Abdome/fisiopatologia , Desmame do Respirador/métodos , Desmame do Respirador/normas
17.
J Appl Physiol (1985) ; 127(1): 264-271, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31161879

RESUMO

The patient-ventilator breath contribution (PVBC) index estimates the relative contribution of the patient to total tidal volume (Vtinsp) during mechanical ventilation in neurally adjusted ventilator assist mode and has been used to titrate ventilator support. The reliability of this index in ventilated patients is unknown and was investigated in this study. PVBC was calculated by comparing tidal volume (Vtinsp) and diaphragm electrical activity (EAdi) during assisted breaths (Vtinsp/EAdi)assist and during unassisted breaths (Vtinsp/EAdi)no-assist. Vtinsp was normalized to peak EAdi (EAdipeak) using 1) one assisted breath, 2) five consecutive assisted breaths, or 3) five assisted breaths with matching EAdi preceding the unassisted breath (N1PVBC2, X5PVBC2, and PX5VBCEAdi-matching2 , respectively). In addition, PVBC was calculated by comparing only Vtinsp for breaths with matching EAdi (PVBCß2). Test-retest reliability of the different PVBC calculation methods was evaluated with the intraclass correlation coefficient (ICC) using five repeated PVBC maneuvers performed with a 1-min interval. In total, 125 PVBC maneuvers were analyzed in 25 patients. ICC [95% confidence interval] values were 0.46 [0.23-0.66], 0.51 [0.33-0.70], and 0.42 [0.14-0.69] for N1PVBC2, X5PVBC2, PX5VBCEAdi-matching2 , respectively. Complex waveform analyses showed that insufficient EAdi filtering by the ventilator software affects reliability of PVBC calculation. With our new EAdi-matching techniques reliability improved (PVBCß2 ICC: 0.78 [0.60-0.90]). We conclude that current techniques to calculate PVBC exhibit low reliability and that our newly developed criteria and estimation of PVBC-using Vtinsp of assisted breaths and unassisted breaths with matching EAdi-improves reliability. This may help implementation of PVBC in clinical practice. NEW & NOTEWORTHY The patient-ventilator breath contribution (PVBC) index estimates the relative contribution of the patient to tidal volume generated by the patient and the mechanical ventilator during mechanical ventilation in neurally adjusted ventilator assist mode. It could be used to titrate ventilator support and thus to limit development of diaphragm dysfunction in intensive care unit patients. Currently available methods for bedside assessment of PVBC are unreliable. Our newly developed criteria and estimation of PVBC largely improve reliability and help to quantify patient contribution to total inspiratory effort.


Assuntos
Respiração Artificial/métodos , Volume de Ventilação Pulmonar/fisiologia , Idoso , Algoritmos , Alarmes Clínicos , Estado Terminal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sistemas Automatizados de Assistência Junto ao Leito , Estudos Prospectivos , Reprodutibilidade dos Testes , Respiração , Ventiladores Mecânicos
19.
Respir Physiol Neurobiol ; 259: 53-57, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30026086

RESUMO

BACKGROUND: Non-invasive ventilation (NIV) provides ventilatory support for patients with respiratory failure. However, the glottis can act as a closing valve, limiting effectiveness of NIV. This study investigates the patency of the glottis during NIV in patients with acute exacerbation of Chronic Obstructive Pulmonary Disease (COPD). METHODS: Electrical activity of the diaphragm, flow, pressure and videolaryngoscopy were acquired. NIV was randomly applied in pressure support (PSV) and neurally adjusted ventilatory assist (NAVA) mode with two levels of support. The angle formed by the vocal cords represented glottis patency. RESULTS: Eight COPD patients with acute exacerbation requiring NIV were included. No differences were found in median glottis angle during inspiration or peak inspiratory effort between PSV and NAVA at low and high support levels. CONCLUSIONS: The present study showed that glottis patency during inspiration in patients with an acute exacerbation of COPD is not affected by mode (PSV or NAVA) or level of assist (5 or 15 cm H2O) during NIV.


Assuntos
Glote/patologia , Glote/fisiologia , Ventilação não Invasiva/métodos , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/terapia , Idoso , Diafragma/fisiopatologia , Feminino , Humanos , Laringoscopia , Masculino , Pessoa de Meia-Idade , Estatísticas não Paramétricas , Gravação de Videodisco
20.
Front Med (Lausanne) ; 5: 301, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483505

RESUMO

Background: Atelectasis frequently develops in critically ill patients and may result in impaired gas exchange among other complications. The long-term effects of bronchoscopy on gas exchange and the effects on respiratory mechanics are largely unknown. Objective: To evaluate the effect of bronchoscopy on gas exchange and respiratory mechanics in intensive care unit (ICU) patients with atelectasis. Methods: A retrospective, single-center cohort study of patients with clinical indication for bronchoscopy because of atelectasis diagnosed on chest X-ray (CXR). Results: In total, 101 bronchoscopies were performed in 88 ICU patients. Bronchoscopy improved oxygenation (defined as an increase of PaO2/FiO2 ratio > 20 mmHg) and ventilation (defined as a decrease of > 2 mmHg in partial pressure of CO2 in arterial blood) in 76 and 59% of procedures, respectively, for at least 24 h. Patients with a low baseline value of PaO2/FiO2 ratio and a high baseline value of PaCO2 were most likely to benefit from bronchoscopy. In addition, in intubated and pressure control ventilated patients, respiratory mechanics improved after bronchoscopy for up to 24 h. Mild complications, and in particular desaturation between 80 and 90%, were reported in 13% of the patients. Conclusions: In selected critically ill patients with atelectasis, bronchoscopy improves oxygenation, ventilation, and respiratory mechanics for at least 24 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA