Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 32(1): 107849, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640219

RESUMO

Replication-blocking DNA lesions are particularly toxic to proliferating cells because they can lead to chromosome mis-segregation if not repaired prior to mitosis. In this study, we report that ZGRF1 null cells accumulate chromosome aberrations following replication perturbation and show sensitivity to two potent replication-blocking anticancer drugs: mitomycin C and camptothecin. Moreover, ZGRF1 null cells are defective in catalyzing DNA damage-induced sister chromatid exchange despite accumulating excessive FANCD2, RAD51, and γ-H2AX foci upon induction of interstrand DNA crosslinks. Consistent with a direct role in promoting recombinational DNA repair, we show that ZGRF1 is a 5'-to-3' helicase that catalyzes D-loop dissociation and Holliday junction branch migration. Moreover, ZGRF1 physically interacts with RAD51 and stimulates strand exchange catalyzed by RAD51-RAD54. On the basis of these data, we propose that ZGRF1 promotes repair of replication-blocking DNA lesions through stimulation of homologous recombination.

2.
Proc Natl Acad Sci U S A ; 117(28): 16527-16536, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601218

RESUMO

Folate deprivation drives the instability of a group of rare fragile sites (RFSs) characterized by CGG trinucleotide repeat (TNR) sequences. Pathological expansion of the TNR within the FRAXA locus perturbs DNA replication and is the major causative factor for fragile X syndrome, a sex-linked disorder associated with cognitive impairment. Although folate-sensitive RFSs share many features with common fragile sites (CFSs; which are found in all individuals), they are induced by different stresses and share no sequence similarity. It is known that a pathway (termed MiDAS) is employed to complete the replication of CFSs in early mitosis. This process requires RAD52 and is implicated in generating translocations and copy number changes at CFSs in cancers. However, it is unclear whether RFSs also utilize MiDAS and to what extent the fragility of CFSs and RFSs arises by shared or distinct mechanisms. Here, we demonstrate that MiDAS does occur at FRAXA following folate deprivation but proceeds via a pathway that shows some mechanistic differences from that at CFSs, being dependent on RAD51, SLX1, and POLD3. A failure to complete MiDAS at FRAXA leads to severe locus instability and missegregation in mitosis. We propose that break-induced DNA replication is required for the replication of FRAXA under folate stress and define a cellular function for human SLX1. These findings provide insights into how folate deprivation drives instability in the human genome.


Assuntos
Endodesoxirribonucleases/metabolismo , Ácido Fólico/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Mitose , Rad51 Recombinase/metabolismo , DNA/genética , DNA/metabolismo , Reparo do DNA , Endodesoxirribonucleases/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Humanos , Rad51 Recombinase/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinases/genética , Recombinases/metabolismo
3.
Cell Res ; 30(11): 997-1008, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32561860

RESUMO

DNA replication stress, a feature of human cancers, often leads to instability at specific genomic loci, such as the common fragile sites (CFSs). Cells experiencing DNA replication stress may also exhibit mitotic DNA synthesis (MiDAS). To understand the physiological function of MiDAS and its relationship to CFSs, we mapped, at high resolution, the genomic sites of MiDAS in cells treated with the DNA polymerase inhibitor aphidicolin. Sites of MiDAS were evident as well-defined peaks that were largely conserved between cell lines and encompassed all known CFSs. The MiDAS peaks mapped within large, transcribed, origin-poor genomic regions. In cells that had been treated with aphidicolin, these regions remained unreplicated even in late S phase; MiDAS then served to complete their replication after the cells entered mitosis. Interestingly, leading and lagging strand synthesis were uncoupled in MiDAS, consistent with MiDAS being a form of break-induced replication, a repair mechanism for collapsed DNA replication forks. Our results provide a better understanding of the mechanisms leading to genomic instability at CFSs and in cancer cells.

4.
Mol Cell ; 78(4): 714-724.e5, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32353258

RESUMO

Nonrandom DNA segregation (NDS) is a mitotic event in which sister chromatids carrying the oldest DNA strands are inherited exclusively by one of the two daughter cells. Although this phenomenon has been observed across various organisms, the mechanism and physiological relevance of this event remain poorly defined. Here, we demonstrate that DNA replication stress can trigger NDS in human cells. This biased inheritance of old template DNA is associated with the asymmetric DNA damage response (DDR), which derives at least in part from telomeric DNA. Mechanistically, we reveal that the ATR/CHK1 signaling pathway plays an essential role in mediating NDS. We show that this biased segregation process leads to cell-cycle arrest and cell death in damaged daughter cells inheriting newly replicated DNA. These data therefore identify a key role for NDS in the maintenance of genomic integrity within cancer cell populations undergoing replication stress due to oncogene activation.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Cromossomos Humanos/genética , Dano ao DNA , Replicação do DNA , Mitose , Proteínas Mutadas de Ataxia Telangiectasia/genética , Quinase 1 do Ponto de Checagem/genética , Segregação de Cromossomos , Células HeLa , Humanos , Transdução de Sinais
5.
Nat Rev Cancer ; 20(9): 533-549, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32472073

RESUMO

Cell division and organismal development are exquisitely orchestrated and regulated processes. The dysregulation of the molecular mechanisms underlying these processes may cause cancer, a consequence of cell-intrinsic and/or cell-extrinsic events. Cellular DNA can be damaged by spontaneous hydrolysis, reactive oxygen species, aberrant cellular metabolism or other perturbations that cause DNA damage. Moreover, several environmental factors may damage the DNA, alter cellular metabolism or affect the ability of cells to interact with their microenvironment. While some environmental factors are well established as carcinogens, there remains a large knowledge gap of others owing to the difficulty in identifying them because of the typically long interval between carcinogen exposure and cancer diagnosis. DNA damage increases in cells harbouring mutations that impair their ability to correctly repair the DNA. Tumour predisposition syndromes in which cancers arise at an accelerated rate and in different organs - the equivalent of a sensitized background - provide a unique opportunity to examine how gene-environment interactions influence cancer risk when the initiating genetic defect responsible for malignancy is known. Understanding the molecular processes that are altered by specific germline mutations, environmental exposures and related mechanisms that promote cancer will allow the design of novel and effective preventive and therapeutic strategies.


Assuntos
Interação Gene-Ambiente , Predisposição Genética para Doença , Neoplasias/genética , Animais , Mutação em Linhagem Germinativa , Humanos
6.
Nat Struct Mol Biol ; 27(5): 424-437, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32398827

RESUMO

Oncogene activation during tumorigenesis generates DNA replication stress, a known driver of genome rearrangements. In response to replication stress, certain loci, such as common fragile sites and telomeres, remain under-replicated during interphase and subsequently complete locus duplication in mitosis in a process known as 'MiDAS'. Here, we demonstrate that RTEL1 (regulator of telomere elongation helicase 1) has a genome-wide role in MiDAS at loci prone to form G-quadruplex-associated R-loops, in a process that is dependent on its helicase function. We reveal that SLX4 is required for the timely recruitment of RTEL1 to the affected loci, which in turn facilitates recruitment of other proteins required for MiDAS, including RAD52 and POLD3. Our findings demonstrate that RTEL1 is required for MiDAS and suggest that RTEL1 maintains genome stability by resolving conflicts that can arise between the replication and transcription machineries.


Assuntos
DNA Helicases/genética , DNA Helicases/metabolismo , Quadruplex G , Genoma Humano/genética , Mitose , Animais , Linhagem Celular , DNA Helicases/química , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Instabilidade Genômica , Humanos , Imunoprecipitação , Camundongos , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Conformação de Ácido Nucleico , RNA Helicases/genética , RNA Helicases/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinases/genética , Recombinases/metabolismo , Ribonuclease H/genética , Ribonuclease H/metabolismo
7.
Cell Rep ; 31(3): 107533, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320646

RESUMO

The cohesin- and condensin-related SMC5/6 complex has largely been studied in the context of DNA repair. Nevertheless, SMC5/6 has an undefined essential function even in the absence of cellular stress. Through the use of an auxin-inducible degradation system for rapidly depleting subunits of the SMC5/6 complex, we show that SMC5/6 is essential for viability in cancer-derived and normal human cells. Impairment of SMC5/6 function is associated with spontaneous induction of DNA damage, p53 activation, cell-cycle arrest, and senescence, as well as an increased frequency of various mitotic chromosome segregation abnormalities. However, we show that this chromosome missegregation is apparent only when SMC5/6 function is impaired during the preceding S and G2 phases. In contrast, degradation of SMC5/6 immediately prior to mitotic entry has little or no impact on the fidelity of chromosome segregation, highlighting the importance of the complex during interphase in order to ensure faithful sister chromatid disjunction.

8.
J Biol Chem ; 295(20): 7138-7153, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32277049

RESUMO

The double-helical structure of genomic DNA is both elegant and functional in that it serves both to protect vulnerable DNA bases and to facilitate DNA replication and compaction. However, these design advantages come at the cost of having to evolve and maintain a cellular machinery that can manipulate a long polymeric molecule that readily becomes topologically entangled whenever it has to be opened for translation, replication, or repair. If such a machinery fails to eliminate detrimental topological entanglements, utilization of the information stored in the DNA double helix is compromised. As a consequence, the use of B-form DNA as the carrier of genetic information must have co-evolved with a means to manipulate its complex topology. This duty is performed by DNA topoisomerases, which therefore are, unsurprisingly, ubiquitous in all kingdoms of life. In this review, we focus on how DNA topoisomerases catalyze their impressive range of DNA-conjuring tricks, with a particular emphasis on DNA topoisomerase III (TOP3). Once thought to be the most unremarkable of topoisomerases, the many lives of these type IA topoisomerases are now being progressively revealed. This research interest is driven by a realization that their substrate versatility and their ability to engage in intimate collaborations with translocases and other DNA-processing enzymes are far more extensive and impressive than was thought hitherto. This, coupled with the recent associations of TOP3s with developmental and neurological pathologies in humans, is clearly making us reconsider their undeserved reputation as being unexceptional enzymes.

9.
J Cell Biol ; 218(12): 3943-3953, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31615875

RESUMO

The ATR kinase is a master regulator of the cellular response to DNA replication stress. Activation of ATR relies on dual pathways involving the TopBP1 and ETAA1 proteins, both of which harbor ATR-activating domains (AADs). However, the exact contribution of the recently discovered ETAA1 pathway to ATR signaling in different contexts remains poorly understood. Here, using an unbiased CRISPR-Cas9-based genome-scale screen, we show that the ATR-stimulating function of ETAA1 becomes indispensable for cell fitness and chromosome stability when the fidelity of DNA replication is compromised. We demonstrate that the ATR-activating potential of ETAA1 is controlled by cell cycle- and replication stress-dependent phosphorylation of highly conserved residues within its AAD, and that the stimulatory impact of these modifications is required for the ability of ETAA1 to prevent mitotic chromosome abnormalities following replicative stress. Our findings suggest an important role of ETAA1 in protecting against genome instability arising from incompletely duplicated DNA via regulatory control of its ATR-stimulating potential.


Assuntos
Antígenos de Superfície/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Replicação do DNA , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Sistemas CRISPR-Cas , Ciclo Celular , Linhagem Celular Tumoral , Aberrações Cromossômicas , Dano ao DNA , Genoma Humano , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Mitose , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Transdução de Sinais
10.
Elife ; 82019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31545170

RESUMO

The faithful segregation of eukaryotic chromosomes in mitosis requires that the genome be duplicated completely prior to anaphase. However, cells with large genomes sometimes fail to complete replication during interphase and instead enter mitosis with regions of incompletely replicated DNA. These regions are processed in early mitosis via a process known as mitotic DNA repair synthesis (MiDAS), but little is known about how cells switch from conventional DNA replication to MiDAS. Using the early embryo of the nematode Caenorhabditis elegans as a model system, we show that the TRAIP ubiquitin ligase drives replisome disassembly in response to incomplete DNA replication, thereby providing access to replication forks for other factors. Moreover, TRAIP is essential for MiDAS in human cells, and is important in both systems to prevent mitotic segregation errors. Our data indicate that TRAIP is a master regulator of the processing of incomplete DNA replication during mitosis in metazoa.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Reparo do DNA , Replicação do DNA , Mitose , Ubiquitina-Proteína Ligases/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Deleção de Genes , Humanos , Ubiquitina-Proteína Ligases/genética
11.
Nat Rev Dis Primers ; 5(1): 64, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537806

RESUMO

Fanconi anaemia (FA), ataxia telangiectasia (A-T), Nijmegen breakage syndrome (NBS) and Bloom syndrome (BS) are clinically distinct, chromosome instability (or breakage) disorders. Each disorder has its own pattern of chromosomal damage, with cells from these patients being hypersensitive to particular genotoxic drugs, indicating that the underlying defect in each case is likely to be different. In addition, each syndrome shows a predisposition to cancer. Study of the molecular and genetic basis of these disorders has revealed mechanisms of recognition and repair of DNA double-strand breaks, DNA interstrand crosslinks and DNA damage during DNA replication. Specialist clinics for each disorder have provided the concentration of expertise needed to tackle their characteristic clinical problems and improve outcomes. Although some treatments of the consequences of a disorder may be possible, for example, haematopoietic stem cell transplantation in FA and NBS, future early intervention to prevent complications of disease will depend on a greater understanding of the roles of the affected DNA repair pathways in development. An important realization has been the predisposition to cancer in carriers of some of these gene mutations.


Assuntos
Distúrbios no Reparo do DNA/diagnóstico , Distúrbios no Reparo do DNA/genética , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/fisiopatologia , Síndrome de Bloom/diagnóstico , Síndrome de Bloom/genética , Síndrome de Bloom/fisiopatologia , Dano ao DNA/genética , Distúrbios no Reparo do DNA/fisiopatologia , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/genética , Anemia de Fanconi/fisiopatologia , Humanos , Síndrome de Quebra de Nijmegen/diagnóstico , Síndrome de Quebra de Nijmegen/genética , Síndrome de Quebra de Nijmegen/fisiopatologia
12.
Nat Struct Mol Biol ; 26(4): 267-274, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936532

RESUMO

All known eukaryotic topoisomerases are only able to relieve torsional stress in DNA. Nevertheless, it has been proposed that the introduction of positive DNA supercoiling is required for efficient sister-chromatid disjunction by Topoisomerase 2a during mitosis. Here we identify a eukaryotic enzymatic activity that introduces torsional stress into DNA. We show that the human Plk1-interacting checkpoint helicase (PICH) and Topoisomerase 3a proteins combine to create an extraordinarily high density of positive DNA supercoiling. This activity, which is analogous to that of a reverse-gyrase, is apparently driven by the ability of PICH to progressively extrude hypernegatively supercoiled DNA loops that are relaxed by Topoisomerase 3a. We propose that this positive supercoiling provides an optimal substrate for the rapid disjunction of sister centromeres by Topoisomerase 2a at the onset of anaphase in eukaryotic cells.


Assuntos
DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/metabolismo , DNA/química , DNA/metabolismo , Cromátides/metabolismo , DNA Helicases/química , DNA Topoisomerases Tipo II/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Humanos
13.
Curr Biol ; 29(7): 1232-1242.e5, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30905608

RESUMO

Abscission is the final step of cell division when the cytokinetic furrow ingresses completely, leading to midbody formation and plasma membrane fission [1]. In human cells, the Aurora-B-driven abscission checkpoint delays cytokinesis until any residual chromatin spanning the midbody is removed [2-5]. If this does not occur efficiently, uneven segregation of daughter genomes can occur. The mechanism by which the abscission checkpoint becomes satisfied to permit cytokinesis is poorly defined. Here, we identify RIF1 and its binding partner, protein phosphatase 1 (PP1), as being critical for regulation of abscission timing in human cells. We show that RIF1 promotes cytokinesis through recruitment of PP1 to the midbody, which then counteracts Aurora B kinase activity, leading to dephosphorylation of a regulator of abscission timing, CHMP4C [6-10]. Although RIF1 binds to unresolved DNA bridges that persist into telophase [11], we show that this cytokinetic function of the RIF1-PP1 axis is not limited to instances where cell division is perturbed by the presence of bridges. Nevertheless, we show that altering the balance of the opposing Aurora B kinase and PP1 phosphatase activities makes cells unresponsive to DNA bridges and sensitizes cells to agents that induce bridge formation. Our data define a new mechanism for regulation of abscission timing and emphasize how antagonism between kinases and phosphatases is a widespread mechanism for determining the timing of mitotic transactions. Because cancer cells experiencing oncogene-induced replication stress generate excessive mitotic DNA bridging [12], targeting this new regulatory pathway could be a promising therapeutic strategy.


Assuntos
Mitose/fisiologia , Receptores de Neuropeptídeo Y/genética , Proteínas de Ligação a Telômeros/genética , Citocinese/fisiologia , Humanos , Mitose/genética , Receptores de Neuropeptídeo Y/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
14.
Nucleic Acids Res ; 47(9): 4597-4611, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30838410

RESUMO

Telomeric regions of the genome are inherently difficult-to-replicate due to their propensity to generate DNA secondary structures and form nucleoprotein complexes that can impede DNA replication fork progression. Precisely how cells respond to DNA replication stalling within a telomere remains poorly characterized, largely due to the methodological difficulties in analysing defined stalling events in molecular detail. Here, we utilized a site-specific DNA replication barrier mediated by the 'Tus/Ter' system to define the consequences of DNA replication perturbation within a single telomeric locus. Through molecular genetic analysis of this defined fork-stalling event, coupled with the use of a genome-wide genetic screen, we identified an important role for the SUMO-like domain protein, Esc2, in limiting genome rearrangements at a telomere. Moreover, we showed that these rearrangements are driven by the combined action of the Mph1 helicase and the homologous recombination machinery. Our findings demonstrate that chromosomal context influences cellular responses to a stalled replication fork and reveal protective factors that are required at telomeric loci to limit DNA replication stress-induced chromosomal instability.


Assuntos
RNA Helicases DEAD-box/genética , Replicação do DNA/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Telômero/genética , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Recombinação Homóloga/genética , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/genética
15.
Semin Cancer Biol ; 55: 61-69, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29692334

RESUMO

Genome instability and cell cycle dysregulation are commonly associated with cancer. DNA replication stress driven by oncogene activation during tumorigenesis is now well established as a source of genome instability. Replication stress generates DNA damage not only during S phase, but also in the subsequent mitosis, where it impacts adversely on chromosome segregation. Some regions of the genome seem particularly sensitive to replication stress-induced instability; most notably, chromosome fragile sites. In this article, we review some of the important issues that have emerged in recent years concerning DNA replication stress and fragile site expression, as well as how chromosome instability is minimized by a family of ring-shaped protein complexes known as SMC proteins. Understanding how replication stress impacts on S phase and mitosis in cancer should provide opportunities for the development of novel and tumour-specific treatments.


Assuntos
Carcinogênese/genética , Segregação de Cromossomos/genética , Replicação do DNA/genética , Neoplasias/genética , Sítios Frágeis do Cromossomo , Dano ao DNA/genética , Instabilidade Genômica/genética , Humanos , Mitose/genética , Neoplasias/patologia
16.
Proc Natl Acad Sci U S A ; 115(51): 13003-13008, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30509972

RESUMO

The instability of chromosome fragile sites is implicated as a causative factor in several human diseases, including cancer [for common fragile sites (CFSs)] and neurological disorders [for rare fragile sites (RFSs)]. Previous studies have indicated that problems arising during DNA replication are the underlying source of this instability. Although the role of replication stress in promoting instability at CFSs is well documented, much less is known about how the fragility of RFSs arises. Many RFSs, as exemplified by expansion of a CGG trinucleotide repeat sequence in the fragile X syndrome-associated FRAXA locus, exhibit fragility in response to folate deficiency or other forms of "folate stress." We hypothesized that such folate stress, through disturbing the replication program within the pathologically expanded repeats within FRAXA, would lead to mitotic abnormalities that exacerbate locus instability. Here, we show that folate stress leads to a dramatic increase in missegregation of FRAXA coupled with the formation of single-stranded DNA bridges in anaphase and micronuclei that contain the FRAXA locus. Moreover, chromosome X aneuploidy is seen when these cells are exposed to folate deficiency for an extended period. We propose that problematic FRAXA replication during interphase leads to a failure to disjoin the sister chromatids during anaphase. This generates further instability not only at FRAXA itself but also of chromosome X. These data have wider implications for the effects of folate deficiency on chromosome instability in human cells.


Assuntos
Sítios Frágeis do Cromossomo , Cromossomos Humanos X , Ácido Fólico/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Linfócitos/patologia , Mitose , Estresse Fisiológico , Células Cultivadas , Replicação do DNA , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Linfócitos/metabolismo , Masculino , Expansão das Repetições de Trinucleotídeos
18.
Cell Rep ; 24(12): 3274-3284, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30232008

RESUMO

PICH is a DNA translocase necessary for the resolution of ultrafine anaphase DNA bridges and to ensure the fidelity of chromosomal segregation. Here, we report the generation of an animal model deficient for PICH that allowed us to investigate its physiological relevance. Pich KO mice lose viability during embryonic development due to a global accumulation of DNA damage. However, despite the presence of chromosomal instability, extensive p53 activation, and increased apoptosis throughout the embryo, Pich KO embryos survive until day 12.5 of embryonic development. The absence of p53 failed to improve the viability of the Pich KO embryos, suggesting that the observed developmental defects are not solely due to p53-induced apoptosis. Moreover, Pich-deficient mouse embryonic fibroblasts exhibit chromosomal instability and are resistant to RASV12/E1A-induced transformation. Overall, our data indicate that PICH is essential to preserve chromosomal integrity in rapidly proliferating cells and is therefore critical during embryonic development and tumorigenesis.


Assuntos
Instabilidade Cromossômica , Desenvolvimento Embrionário/genética , Animais , Apoptose , Células Cultivadas , Dano ao DNA , DNA Helicases/metabolismo , Camundongos , Proteína Supressora de Tumor p53/metabolismo
19.
Nat Struct Mol Biol ; 25(9): 868-876, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30177760

RESUMO

Faithful chromosome segregation requires that the sister chromatids be disjoined completely. Defective disjunction can lead to the persistence of histone-free threads of DNA known as ultra-fine bridges (UFBs) that connect the separating sister DNA molecules during anaphase. UFBs arise at specific genomic loci and can only be visualized by detection of associated proteins such as PICH, BLM, topoisomerase IIIα, and RPA. However, it remains unknown how these proteins work together to promote UFB processing. We used a combination of ensemble biochemistry and new single-molecule assays to reconstitute key steps of UFB recognition and processing by these human proteins in vitro. We discovered characteristic patterns of hierarchical recruitment and coordinated biochemical activities that were specific for DNA structures modeling UFBs arising at either centromeres or common fragile sites. Our results describe a mechanistic model for how unresolved DNA replication structures are processed by DNA-structure-specific binding factors in mitosis to prevent pathological chromosome nondisjunction.


Assuntos
Anáfase , DNA/química , DNA/genética , Divisão Celular , Centrômero , Segregação de Cromossomos , Instabilidade Genômica , Humanos
20.
Am J Hum Genet ; 103(2): 221-231, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30057030

RESUMO

Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA