Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 3214255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36348654

RESUMO

The Arabic syntactic diacritics restoration problem is often solved using long short-term memory (LSTM) networks. Handcrafted features are used to augment these LSTM networks or taggers to improve performance. A transformer-based machine learning technique known as bidirectional encoder representations from transformers (BERT) has become the state-of-the-art method for natural language understanding in recent years. In this paper, we present a novel tagger based on BERT models to restore Arabic syntactic diacritics. We formulated the syntactic diacritics restoration as a token sequence classification task similar to named-entity recognition (NER). Using the Arabic TreeBank (ATB) corpus, the developed BERT tagger achieves a 1.36% absolute case-ending error rate (CEER) over other systems.


Assuntos
Idioma , Processamento de Linguagem Natural , Aprendizado de Máquina , Memória de Longo Prazo , Reconhecimento Psicológico
2.
Sensors (Basel) ; 21(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921549

RESUMO

The paper proposes three modeling techniques to improve the performance evaluation of the call center agent. The first technique is speech processing supported by an attention layer for the agent's recorded calls. The speech comprises 65 features for the ultimate determination of the context of the call using the Open-Smile toolkit. The second technique uses the Max Weights Similarity (MWS) approach instead of the Softmax function in the attention layer to improve the classification accuracy. MWS function replaces the Softmax function for fine-tuning the output of the attention layer for processing text. It is formed by determining the similarity in the distance of input weights of the attention layer to the weights of the max vectors. The third technique combines the agent's recorded call speech with the corresponding transcribed text for binary classification. The speech modeling and text modeling are based on combinations of the Convolutional Neural Networks (CNNs) and Bi-directional Long-Short Term Memory (BiLSTMs). In this paper, the classification results for each model (text versus speech) are proposed and compared with the multimodal approach's results. The multimodal classification provided an improvement of (0.22%) compared with acoustic model and (1.7%) compared with text model.


Assuntos
Call Centers , Atenção , Expressão Facial , Redes Neurais de Computação , Fala
3.
Sensors (Basel) ; 20(20)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080829

RESUMO

Many companies have transformed their telephone systems into Voice over IP (VoIP) systems. Although implementation is simple, VoIP is vulnerable to different types of attacks. The Session Initiation Protocol (SIP) is a widely used protocol for handling VoIP signaling functions. SIP is unprotected against attacks because it is a text-based protocol and lacks defense against the growing security threats. The Distributed Denial of Service (DDoS) attack is a harmful attack, because it drains resources, and prevents legitimate users from using the available services. In this paper, we formulate detection of DDoS attacks as a classification problem and propose an approach using token embedding to enhance extracted features from SIP messages. We discuss a deep learning model based on Recurrent Neural Networks (RNNs) developed to detect DDoS attacks with low and high-rate intensity. For validation, a balanced real traffic dataset was built containing three attack scenarios with different attack durations and intensities. Experiments show that the system has a high detection accuracy and low detection time. The detection accuracy was higher for low-rate attacks than that of traditional machine learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...