Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(10): 4043-4050, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31919948

RESUMO

Ni,N-doped carbon catalysts have shown promising catalytic performance for CO2 electroreduction (CO2 R) to CO; this activity has often been attributed to the presence of nitrogen-coordinated, single Ni atom active sites. However, experimentally confirming Ni-N bonding and correlating CO2 reduction (CO2 R) activity to these species has remained a fundamental challenge. We synthesized polyacrylonitrile-derived Ni,N-doped carbon electrocatalysts (Ni-PACN) with a range of pyrolysis temperatures and Ni loadings and correlated their electrochemical activity with extensive physiochemical characterization to rigorously address the origin of activity in these materials. We found that the CO2 R to CO partial current density increased with increased Ni content before plateauing at 2 wt % which suggests a dispersed Ni active site. These dispersed active sites were investigated by hard and soft X-ray spectroscopy, which revealed that pyrrolic nitrogen ligands selectively bind Ni atoms in a distorted square-planar geometry that strongly resembles the active sites of molecular metal-porphyrin catalysts.

2.
Proc Natl Acad Sci U S A ; 117(23): 12572-12575, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-31980521

RESUMO

Electrochemical CO reduction can serve as a sequential step in the transformation of CO2 into multicarbon fuels and chemicals. In this study, we provide insights on how to steer selectivity for CO reduction almost exclusively toward a single multicarbon oxygenate by carefully controlling the catalyst composition and its surrounding reaction conditions. Under alkaline reaction conditions, we demonstrate that planar CuAg electrodes can reduce CO to acetaldehyde with over 50% Faradaic efficiency and over 90% selectivity on a carbon basis at a modest electrode potential of -0.536 V vs. the reversible hydrogen electrode. The Faradaic efficiency to acetaldehyde was further enhanced to 70% by increasing the roughness factor of the CuAg electrode. Density functional theory calculations indicate that Ag ad-atoms on Cu weaken the binding energy of the reduced acetaldehyde intermediate and inhibit its further reduction to ethanol, demonstrating that the improved selectivity to acetaldehyde is due to the electronic effect from Ag incorporation. These findings will aid in the design of catalysts that are able to guide complex reaction networks and achieve high selectivity for the desired product.

3.
ACS Appl Mater Interfaces ; 12(5): 5901-5908, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31971770

RESUMO

Silicon has shown promise for use as a small band gap (1.1 eV) absorber material in photoelectrochemical (PEC) water splitting. However, the limited stability of silicon in acidic electrolyte requires the use of protection strategies coupled with catalysts. Herein, spin coating is used as a versatile method to directly coat silicon photoanodes with an IrOx oxygen evolution reaction (OER) catalyst, reducing the processing complexity compared to conventional fabrication schemes. Biphasic strontium chloride/iridium oxide (SrCl2:IrOx) catalysts are also developed, and both catalysts form photoactive junctions with silicon and demonstrate high photoanode activity. The iridium oxide photoanode displays a photocurrent onset at 1.06 V vs reversible hydrogen electrode (RHE), while the SrCl2:IrOx photoanode onsets earlier at 0.96 V vs RHE. The differing potentials are consistent with the observed photovoltages of 0.43 and 0.53 V for the IrOx and SrCl2:IrOx, respectively. By measuring the oxidation of a reversible redox couple, Fe(CN)63-/4-, we compare the charge carrier extraction of the devices and show that the addition of SrCl2 to the IrOx catalyst improves the silicon-electrolyte interface compared to pure IrOx. However, the durability of the strontium-containing photoanode remains a challenge, with its photocurrent density decreasing by 90% over 4 h. The IrOx photoanode, on the other hand, maintained a stable photocurrent density over this timescale. Characterization of the as-prepared and post-tested material structure via Auger electron spectroscopy identifies catalyst film cracking and delamination as the primary failure modes. We propose that improvements to catalyst adhesion should further the viability of spin coating as a technique for photoanode preparation.

4.
Science ; 364(6438)2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31023896

RESUMO

Electrocatalytic transformation of carbon dioxide (CO2) and water into chemical feedstocks offers the potential to reduce carbon emissions by shifting the chemical industry away from fossil fuel dependence. We provide a technoeconomic and carbon emission analysis of possible products, offering targets that would need to be met for economically compelling industrial implementation to be achieved. We also provide a comparison of the projected costs and CO2 emissions across electrocatalytic, biocatalytic, and fossil fuel-derived production of chemical feedstocks. We find that for electrosynthesis to become competitive with fossil fuel-derived feedstocks, electrical-to-chemical conversion efficiencies need to reach at least 60%, and renewable electricity prices need to fall below 4 cents per kilowatt-hour. We discuss the possibility of combining electro- and biocatalytic processes, using sequential upgrading of CO2 as a representative case. We describe the technical challenges and economic barriers to marketable electrosynthesized chemicals.

5.
Phys Chem Chem Phys ; 21(10): 5402-5408, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30785434

RESUMO

The rational improvement of current and developing electrochemical technologies requires atomistic understanding of electrode-electrolyte interfaces. However, examining these interfaces under operando conditions, where performance is typically evaluated and benchmarked, remains challenging, as it necessitates incorporating an operando probe during full electrochemical operation. In this study, we describe a custom electrochemical flow cell that enables near-surface-sensitive operando investigation of planar thin-film catalysts at significant hydrogen evolution reaction (HER) rates (in excess of -100 mA cm-2) using grazing incidence X-ray methods. Grazing-incidence X-ray spectroscopy and diffraction were implemented on the same sample under identical HER conditions, demonstrating how the combined measurements track changing redox chemistry and structure of Cu thin-film catalyst surfaces as a function of electrochemical conditions. The coupling of these methods with improved mass transport and hydrodynamic control establishes a new paradigm for operando measurement design, enabling unique insights into the key fundamental processes occurring at the catalyst-electrolyte interface.

6.
J Am Chem Soc ; 140(25): 7851-7859, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29874062

RESUMO

Heteroatom-doped carbons have drawn increasing research interest as catalysts for various electrochemical reactions due to their unique electronic and surface structures. In particular, co-doping of carbon with boron and nitrogen has been shown to provide significant catalytic activity for oxygen reduction reaction (ORR). However, limited experimental work has been done to systematically study these materials, and much remains to be understood about the nature of the active site(s), particularly with regards to the factors underlying the activity enhancements of these boron-carbon-nitrogen (BCN) materials. Herein, we prepare several BCN materials experimentally with a facile and controlled synthesis method, and systematically study their electrochemical performance. We demonstrate the existence of h-BN domains embedded in the graphitic structures of these materials using X-ray spectroscopy. These synthesized structures yield higher activity and selectivity toward the 2e- ORR to H2O2 than structures with individual B or N doping. We further employ density functional theory calculations to understand the role of a variety of h-BN domains within the carbon lattice for the ORR and find that the interface between h-BN domains and graphene exhibits unique catalytic behavior that can preferentially drive the production of H2O2. To the best of our knowledge, this is the first example of h-BN domains in carbon identified as a novel system for the electrochemical production of H2O2.

7.
Nanomaterials (Basel) ; 8(1)2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329264

RESUMO

Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mgPt-1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mgPt-1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s-1), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

8.
Science ; 357(6350): 479-484, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28774924

RESUMO

Platinum group metal-free (PGM-free) metal-nitrogen-carbon catalysts have emerged as a promising alternative to their costly platinum (Pt)-based counterparts in polymer electrolyte fuel cells (PEFCs) but still face some major challenges, including (i) the identification of the most relevant catalytic site for the oxygen reduction reaction (ORR) and (ii) demonstration of competitive PEFC performance under automotive-application conditions in the hydrogen (H2)-air fuel cell. Herein, we demonstrate H2-air performance gains achieved with an iron-nitrogen-carbon catalyst synthesized with two nitrogen precursors that developed hierarchical porosity. Current densities recorded in the kinetic region of cathode operation, at fuel cell voltages greater than ~0.75 V, were the same as those obtained with a Pt cathode at a loading of 0.1 milligram of Pt per centimeter squared. The proposed catalytic active site, carbon-embedded nitrogen-coordinated iron (FeN4), was directly visualized with aberration-corrected scanning transmission electron microscopy, and the contributions of these active sites associated with specific lattice-level carbon structures were explored computationally.

9.
Proc Natl Acad Sci U S A ; 114(23): 5918-5923, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533377

RESUMO

In this study we control the surface structure of Cu thin-film catalysts to probe the relationship between active sites and catalytic activity for the electroreduction of CO2 to fuels and chemicals. Here, we report physical vapor deposition of Cu thin films on large-format (∼6 cm2) single-crystal substrates, and confirm epitaxial growth in the <100>, <111>, and <751> orientations using X-ray pole figures. To understand the relationship between the bulk and surface structures, in situ electrochemical scanning tunneling microscopy was conducted on Cu(100), (111), and (751) thin films. The studies revealed that Cu(100) and (111) have surface adlattices that are identical to the bulk structure, and that Cu(751) has a heterogeneous kinked surface with (110) terraces that is closely related to the bulk structure. Electrochemical CO2 reduction testing showed that whereas both Cu(100) and (751) thin films are more active and selective for C-C coupling than Cu(111), Cu(751) is the most selective for >2e- oxygenate formation at low overpotentials. Our results demonstrate that epitaxy can be used to grow single-crystal analogous materials as large-format electrodes that provide insights on controlling electrocatalytic activity and selectivity for this reaction.

10.
Adv Mater ; 29(7)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27982465

RESUMO

Rich, porous graphene frameworks decorated with uniformly dispersed active sites are prepared by using polyaniline as a graphene precursor and introducing phenanthroline as a pore-forming agent. The unprecedented fuel-cell performance of this electrocatalyst is linked to the graphene frameworks with vast distribution of pore sizes, which maximizes the active-sites accessibility, facilitates mass-transport properties, and improves the carbon corrosion resistance.

11.
Small ; 11(12): 1443-52, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25400088

RESUMO

In this work, large size (i.e., diameter > 100 nm) graphene tubes with nitrogen-doping are prepared through a high-temperature graphitization process of dicyandiamide (DCDA) and Iron(II) acetate templated by a novel metal-organic framework (MIL-100(Fe)). The nitrogen-doped graphene tube (N-GT)-rich iron-nitrogen-carbon (Fe-N-C) catalysts exhibit inherently high activity towards the oxygen reduction reaction (ORR) in more challenging acidic media. Furthermore, aiming to improve the activity and stability of conventional Pt catalysts, the ORR active N-GT is used as a matrix to disperse Pt nanoparticles in order to build a unique hybrid Pt cathode catalyst. This is the first demonstration of the integration of a highly active Fe-N-C catalyst with Pt nanoparticles. The synthesized 20% Pt/N-GT composite catalysts demonstrate significantly enhanced ORR activity and H(2) -air fuel cell performance relative to those of 20% Pt/C, which is mainly attributed to the intrinsically active N-GT matrix along with possible synergistic effects between the non-precious metal active sites and the Pt nanoparticles. Unlike traditional Pt/C, the hybrid catalysts exhibit excellent stability during the accelerated durability testing, likely due to the unique highly graphitized graphene tube morphologies, capable of providing strong interaction with Pt nanoparticles and then preventing their agglomeration.

12.
Adv Mater ; 27(7): 1229-34, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25417577

RESUMO

Direct growth of multigrain platinum nanowires on sulfur-doped graphene (PtNW/SG) is reported. The growth mechanism, including Pt nanoparticle nucleation on SG, followed by nanoparticle attachment with orientation along the <111> direction is highlighted. PtNW/SG demonstrates improved Pt mass and specific activity compared with commercial catalysts toward oxygen reduction, in addition to dramatically improved stability through accelerated durability testing.

13.
ACS Appl Mater Interfaces ; 6(22): 19783-90, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25329422

RESUMO

Substrate supported conductive thin films are prepared by the self-assembly of graphene oxide (GO) on a cationic polyacrylamide (CPAM) layer followed by a subsequent chemical reduction. During self-assembly, the dispersed GO nanosheets with a negative zeta potential from solution are spontaneously assembled onto the positively charged CPAM adsorption layer. In addition, CPAM adsorption on the substrate is studied with an electrochemical quartz crystal microbalance (EQCM), showing adsorption stabilization could be established in less than 150 s. The electrostatic interactions between GO and CPAM are investigated by changing the polarization potential with EQCM for the first time, and optimal conditions for facilitating self-assembly are determined. The self-assembled GO/CPAM films are further characterized by Raman spectroscopy, infrared spectroscopy and atomic force microscopy. Importantly, reduced GO (R-GO)/CPAM composite films exhibiting a sheet resistance of 3.1 kΩ/sq can be obtained via in situ reduction in sodium borohydride for 20 min at room temperature. This provides a simple, highly effective, and green route to prepare conductive graphene-based composite thin films.

14.
Nanotechnology ; 25(44): 445602, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25325248

RESUMO

We report a novel strategy for the fabrication of nanoporous gold (NPG) films. The fabrication process involves the electrodeposition of a gold-tin alloy, followed by subsequent chemical dealloying of tin. Scanning electron microscopy (SEM) images show a bicontinuous nanoporous structure formed on the substrates after chemical dealloying. Energy dispersive x-ray (EDX) analysis indicates that there are no impurities in the Au-Sn alloy film with an average composition of 58 at. % Au and 42 at. % Sn. After dealloying, only gold remains in the NPG film indicating the effectiveness of this technique. X-ray diffraction (XRD) results reveal that the as-prepared Au-Sn alloy film is composed of two phases (Au5Sn and AuSn), while the NPG film is composed of a single phase (Au). We demonstrate that this approach enables the fabrication of NPG films, either freestanding or supported on various conductive substrates such as copper foil, stainless steel sheet and nickel foam. The resulting NPG electrode exhibits enhanced electrocatalytic activity toward both H2O2 reduction and methanol oxidation compared to the polished Au disc electrode. Our strategy provides a general method to fabricate high quality NPG films on conductive substrates, which will broaden the application potential of NPG or NPG-based materials in various fields such as catalysis, optics and sensor technology.

15.
ACS Appl Mater Interfaces ; 6(1): 568-74, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24328159

RESUMO

Well-ordered, one-dimensional H2Ti2O5, H2Ti8O17, TiO2-B, and anatase TiO2/TiO2-B nanowire arrays were innovatively designed and directly grown on current collectors as high performance three dimensional (3D) anodes for binder and carbon free lithium ion batteries (LIBs). The prepared thin nanowires exhibited a single crystalline phase with highly uniform morphologies, diameters ranging from 70-80 nm, and lengths of around 15 µm. Specifically, reversible Li insertion and extraction reactions around 1.6-1.8 V with initial intercalation capacities of 326 and 271 mA h g(-1) at a cycling rate of 0.1 C (where 1 C = 335 mA g(-1)) were observed for H2Ti8O17 and TiO2-B nanowire arrays, respectively. Among the four compounds investigated, the H2Ti8O17 nanowire electrode demonstrated optimal cycling stability, delivering a high specific discharge capacity of 157.8 mA h g(-1) with a coulombic efficiency of 100%, even after the 500th cycle at a current rate of 1 C. Furthermore, the H2Ti8O17 nanowire electrode displayed superior rate performance with rechargeable discharge capacities of 127.2, 111.4, 87.2, and 73.5 mA h g(-1) at 5 C, 10 C, 20 C, and 30 C, respectively. These results present the potential opportunity for the development of high-performance LIBs based on nanostructured Ti-based anode materials in terms of high stability and high rate capability.

16.
Nano Lett ; 13(11): 5467-73, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24079359

RESUMO

The unique TiO2-C/MnO2 core-double-shell nanowires are synthesized for the first time using as anode materials for lithium ion batteries (LIBs). They combine both advantages from TiO2 such as excellent cycle stability and MnO2 with high capacity (1230 mA h g(-1)). The additional C interlayer intends to improve the electrical conductivity. The self-supported nanowire arrays grown directly on current-collecting substrates greatly simplify the fabrication processing of electrodes without applying binder and conductive additives. Each nanowire is anchored to the current collector, leading to fast charge transfer. The unique one-dimensional core-double-shell nanowires exhibit enhanced electrochemical performance with a higher discharge/charge capacity, superior rate capability, and longer cycling lifetime.

17.
Sci Rep ; 3: 2431, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23942256

RESUMO

Graphene supported Pt nanostructures have great potential to be used as catalysts in electrochemical energy conversion and storage technologies; however the simultaneous control of Pt morphology and dispersion, along with ideally tailoring the physical properties of the catalyst support properties has proven very challenging. Using sulfur doped graphene (SG) as a support material, the heterogeneous dopant atoms could serve as nucleation sites allowing for the preparation of SG supported Pt nanowire arrays with ultra-thin diameters (2-5 nm) and dense surface coverage. Detailed investigation of the preparation technique reveals that the structure of the resulting composite could be readily controlled by fine tuning the Pt nanowire nucleation and growth reaction kinetics and the Pt-support interactions, whereby a mechanistic platinum nanowire array growth model is proposed. Electrochemical characterization demonstrates that the composite materials have 2-3 times higher catalytic activities toward the oxygen reduction and methanol oxidation reaction compared with commercial Pt/C catalyst.

18.
Nano Lett ; 12(4): 1946-52, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22372510

RESUMO

A new class of core-corona structured bifunctional catalyst (CCBC) consisting of lanthanum nickelate centers supporting nitrogen-doped carbon nanotubes (NCNT) has been developed for rechargeable metal-air battery application. The nanostructured design of the catalyst allows the core and corona to catalyze the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), respectively. These materials displayed exemplary OER and ORR activity through half-cell testing, comparable to state of the art commercial lanthanum nickelate (LaNiO(3)) and carbon-supported platinum (Pt/C), with added bifunctional capabilities allowing metal-air battery rechargeability. LaNiO(3) and Pt/C are currently the most accepted benchmark electrocatalyst materials for the OER and ORR, respectively; thus with comparable activity toward both of these reactions, CCBC are presented as a novel, inexpensive catalyst component for the cathode of rechargeable metal-air batteries. Moreover, after full-range degradation testing (FDT) CCBC retained excellent activity, retaining 3 and 13 times greater ORR and OER current upon comparison to state of the art Pt/C. Zinc-air battery performances of CCBC is in good agreement with the half-cell experiments with this bifunctional electrocatalyst displaying high activity and stability during battery discharge, charge, and cycling processes. Owing to its outstanding performance toward both the OER and ORR, comparable with the highest performing commercial catalysts to date for each of the respective reaction, coupled with high stability and rechargeability, CCBC is presented as a novel class of bifunctional catalyst material that is very applicable to future generation rechargeable metal-air batteries.

19.
J Am Chem Soc ; 132(48): 17056-8, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21070073

RESUMO

In the present work, we have designed and synthesized a new highly durable iron phtalocyanine based nonprecious oxygen reduction reaction (ORR) catalyst (Fe-SPc) for polymer electrolyte membrane fuel cells (PEMFCs). The Fe-SPc, with a novel structure inspired by that of naturally occurring oxygen activation catalysts, is prepared by a nonpyrolyzing method, allowing adequate control of the atomic structure and surface properties of the material. Significantly improved ORR stability of the Fe-SPc is observed compared with the commercial Fe-Pc catalysts. The Fe-SPc has similar activity to that of the commercial Fe-Pc initially, while the Fe-SPc displays 4.6 times higher current density than that of the commercial Fe-Pc after 10 sweep potential cycles, and a current density that is 7.4 times higher after 100 cycles. This has been attributed to the incorporation of electron-donating functional groups, along with a high degree of steric hindrance maintaining active site isolation. Nonprecious Fe-SPc is promising as a potential alternative ORR electrocatalyst for PEMFCs.


Assuntos
Biomimética , Fontes de Energia Elétrica , Compostos Ferrosos/química , Indóis/química , Membranas Artificiais , Oxigênio/química , Polímeros/química , Catálise , Eletrólitos/química , Modelos Moleculares , Conformação Molecular , Oxirredução
20.
Nanotechnology ; 21(16): 165705, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20351403

RESUMO

Novel tin-oxide (SnO(2))-coated single-walled carbon nanotube (SWNT) bundles supporting platinum (Pt) electrocatalysts for ethanol oxidation were developed for direct ethanol fuel cells. SnO(2)-coated SWNT (SnO(2)-SWNT) bundles were synthesized by a simple chemical-solution route. SnO(2)-SWNT bundles supporting Pt (Pt/SnO(2)-SWNTs) electrocatalysts and SWNT-supported Pt (Pt/SWNT) electrocatalysts were prepared by an ethylene glycol reduction method. The catalysts were physically characterized using TGA, XRD and TEM and electrochemically evaluated through cyclic voltammetry experiments. The Pt/SnO(2)-SWNTs showed greatly enhanced electrocatalytic activity for ethanol oxidation in acid medium, compared to the Pt/SWNT. The optimal SnO(2) loading of Pt/SnO(2)-SWNT catalysts with respect to specific catalytic activity for ethanol oxidation was also investigated.


Assuntos
Fontes de Energia Elétrica , Eletroquímica/instrumentação , Eletrodos , Etanol/química , Nanotubos de Carbono/ultraestrutura , Platina/química , Compostos de Estanho/química , Catálise , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...