Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 150(3): 1821, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34598611

RESUMO

Small explosive charges, called seal bombs, used by commercial fisheries to deter marine mammals from depredation and accidental bycatch during fishing operations, produce high level sounds that may negatively impact nearby animals. Seal bombs were exploded underwater and recorded at various ranges with a calibrated hydrophone to characterize the pulse waveforms and to provide appropriate propagation loss models for source level (SL) estimates. Waveform refraction became important at about 1500 m slant range with approximately spherical spreading losses observed at shorter ranges. The SL for seal bombs was estimated to be 233 dB re 1 µPa m; however, for impulses such as explosions, better metrics integrate over the pulse duration, accounting for the total energy in the pulse, including source pressure impulse, estimated as 193 Pa m s, and sound exposure source level, estimated as 197 dB re 1 µPa2 m2 s over a 2 ms window. Accounting for the whole 100 ms waveform, including the bubble pulses and sea surface reflections, sound exposure source level was 203 dB re 1 µPa2 m2 s. Furthermore, integrating the energy over an entire event period of multiple explosions (i.e., cumulative sound exposure level) should be considered when evaluating impact.

2.
Nature ; 598(7881): 415, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34667286
3.
Sci Rep ; 11(1): 18391, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526540

RESUMO

Commercial shipping is the dominant source of low-frequency noise in the ocean. It has been shown that the noise radiated by an individual vessel depends upon the vessel's speed. This study quantified the reduction in source levels (SLs) and sound exposure levels (SELs) for ships participating in two variations of a vessel speed reduction (VSR) program. SLs and SELs of individual ships participating in the program between 2014 and 2017 were statistically lower than non-participating ships (p < 0.001). In the 2018 fleet-based program, there were statistical differences between the SLs and SELs of fleets that participated with varying degrees of cooperation. Significant reductions in SL and SEL relied on cooperation of 25% or more in slowing vessel speed. This analysis highlights how slowing vessel speed to 10 knots or less is an effective method in reducing underwater noise emitted from commercial ships.

4.
J Acoust Soc Am ; 149(6): 4516, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34241440

RESUMO

An empirical model for wind-generated underwater noise is presented that was developed using an extensive dataset of acoustic field recordings and a global wind model. These data encompass more than one hundred years of recording-time and capture high wind events, and were collected both on shallow continental shelves and in open ocean deep-water settings. The model aims to explicitly separate noise generated by wind-related sources from noise produced by anthropogenic sources. Two key wind-related sound-generating mechanisms considered are: surface wave and turbulence interactions, and bubble and bubble cloud oscillations. The model for wind-generated noise shows small frequency dependence (5 dB/decade) at low frequencies (10-100 Hz), and larger frequency dependence (∼15 dB/decade) at higher frequencies (400 Hz-20 kHz). The relationship between noise level and wind speed is linear for low wind speeds (<3.3 m/s) and increases to a higher power law (two or three) at higher wind speeds, suggesting a transition between surface wave/turbulence and bubble source mechanisms. At the highest wind speeds (>15 m/s), noise levels begin to decrease at high frequencies (>10 kHz), likely due to interaction between bubbles and screening of noise radiation in the presence of high-density bubble clouds.

5.
J Acoust Soc Am ; 149(5): 3301, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34241092

RESUMO

This work demonstrates the effectiveness of using humans in the loop processes for constructing large training sets for machine learning tasks. A corpus of over 57 000 toothed whale echolocation clicks was developed by using a permissive energy-based echolocation detector followed by a machine-assisted quality control process that exploits contextual cues. Subsets of these data were used to train feed forward neural networks that detected over 850 000 echolocation clicks that were validated using the same quality control process. It is shown that this network architecture performs well in a variety of contexts and is evaluated against a withheld data set that was collected nearly five years apart from the development data at a location over 600 km distant. The system was capable of finding echolocation bouts that were missed by human analysts, and the patterns of error in the classifier consist primarily of anthropogenic sources that were not included as counter-training examples. In the absence of such events, typical false positive rates are under ten events per hour even at low thresholds.


Assuntos
Ecolocação , Animais , Cetáceos , Redes Neurais de Computação , Vocalização Animal
6.
Sci Rep ; 11(1): 8240, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859235

RESUMO

Distribution models are needed to understand spatiotemporal patterns in cetacean occurrence and to mitigate anthropogenic impacts. Shipboard line-transect visual surveys are the standard method for estimating abundance and describing the distributions of cetacean populations. Ship-board surveys provide high spatial resolution but lack temporal resolution and seasonal coverage. Stationary passive acoustic monitoring (PAM) employs acoustic sensors to sample point locations nearly continuously, providing high temporal resolution in local habitats across days, seasons and years. To evaluate whether cross-platform data synthesis can improve distribution predictions, models were developed for Cuvier's beaked whales, sperm whales, and Risso's dolphins in the oceanic Gulf of Mexico using two different methods: generalized additive models and neural networks. Neural networks were able to learn unspecified interactions between drivers. Models that incorporated PAM datasets out-performed models trained on visual data alone, and joint models performed best in two out of three cases. The modeling results suggest that, when taken together, multiple species distribution models using a variety of data types may support conservation and management of Gulf of Mexico cetacean populations by improving the understanding of temporal and spatial species distribution trends.

9.
Sci Rep ; 10(1): 7710, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382054

RESUMO

Blue whales need to time their migration from their breeding grounds to their feeding grounds to avoid missing peak prey abundances, but the cues they use for this are unknown. We examine migration timing (inferred from the local onset and cessation of blue whale calls recorded on seafloor-mounted hydrophones), environmental conditions (e.g., sea surface temperature anomalies and chlorophyll a), and prey (spring krill biomass from annual net tow surveys) during a 10 year period (2008-2017) in waters of the Southern California Region where blue whales feed in the summer. Colder sea surface temperature anomalies the previous season were correlated with greater krill biomass the following year, and earlier arrival by blue whales. Our results demonstrate a plastic response of blue whales to interannual variability and the importance of krill as a driving force behind migration timing. A decadal-scale increase in temperature due to climate change has led to blue whales extending their overall time in Southern California. By the end of our 10-year study, whales were arriving at the feeding grounds more than one month earlier, while their departure date did not change. Conservation strategies will need to account for increased anthropogenic threats resulting from longer times at the feeding grounds.


Assuntos
Migração Animal/fisiologia , Balaenoptera/fisiologia , Comportamento Alimentar/fisiologia , Oceanos e Mares , Animais , Biomassa , California , Mudança Climática , Euphausiacea/fisiologia , Humanos , Estações do Ano , Temperatura
10.
PLoS Comput Biol ; 16(1): e1007598, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31929520

RESUMO

Passive acoustic monitoring has become an important data collection method, yielding massive datasets replete with biological, environmental and anthropogenic information. Automated signal detectors and classifiers are needed to identify events within these datasets, such as the presence of species-specific sounds or anthropogenic noise. These automated methods, however, are rarely a complete substitute for expert analyst review. The ability to visualize and annotate acoustic events efficiently can enhance scientific insights from large, previously intractable datasets. A MATLAB-based graphical user interface, called DetEdit, was developed to accelerate the editing and annotating of automated detections from extensive acoustic datasets. This tool is highly-configurable and multipurpose, with uses ranging from annotation and classification of individual signals or signal-clusters and evaluation of signal properties, to identification of false detections and false positive rate estimation. DetEdit allows users to step through acoustic events, displaying a range of signal features, including time series of received levels, long-term spectral averages, time intervals between detections, and scatter plots of peak frequency, RMS, and peak-to-peak received levels. Additionally, it displays either individual, or averaged sound pressure waveforms, and power spectra within each acoustic event. These views simultaneously provide analysts with signal-level detail and encounter-level context. DetEdit creates datasets of signal labels for further analyses, such as training classifiers and quantifying occurrence, abundances, or trends. Although designed for evaluating underwater-recorded odontocete echolocation click detections, DetEdit can be adapted to almost any stereotyped impulsive signal. Our software package complements available tools for the bioacoustic community and is provided open source at https://github.com/MarineBioAcousticsRC/DetEdit.


Assuntos
Curadoria de Dados/métodos , Monitoramento Ambiental/métodos , Espectrografia do Som , Interface Usuário-Computador , Vocalização Animal/classificação , Animais , Cetáceos/fisiologia , Bases de Dados Factuais , Internet , Processamento de Sinais Assistido por Computador
11.
Sci Rep ; 9(1): 12617, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31471552

RESUMO

During the eastern North Pacific gray whale 2014-2015 southbound migration, acoustic call recordings, infrared blow detections, and visual sightings were combined to estimate cue rates, needed to convert detections into abundance. The gray whale acoustic call rate ranged from 2.3-24 calls/whale/day during the peak of the southbound migration with an average of 7.5 calls/whale/day over both the southbound and northbound migrations. The average daily calling rate increased between 30 December-13 February. With a call rate model, we estimated that 4,340 gray whales migrated south before visual observations began on 30 December, which is 2,829 more gray whales than used in the visual estimate, and would add approximately 10% to the abundance estimate. We suggest that visual observers increase their survey effort to all of December to document gray whale presence. The infrared camera blow rate averaged 49 blows/whale/hour over 5-8 January. Probability of detection of a whale blow by the infrared camera was the same at night as during the day. However, probability of detection decreased beyond 2.1 km offshore, whereas visual sightings revealed consistent whale densities up to 3 km offshore. We suggest that future infrared camera surveys use multiple cameras optimised for different ranges offshore.


Assuntos
Acústica , Migração Animal/fisiologia , Vocalização Animal/fisiologia , Baleias/fisiologia , Animais , Humanos , Oceano Pacífico , Espectrografia do Som , Gravação em Vídeo
12.
PLoS Comput Biol ; 13(12): e1005823, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29216184

RESUMO

Delphinids produce large numbers of short duration, broadband echolocation clicks which may be useful for species classification in passive acoustic monitoring efforts. A challenge in echolocation click classification is to overcome the many sources of variability to recognize underlying patterns across many detections. An automated unsupervised network-based classification method was developed to simulate the approach a human analyst uses when categorizing click types: Clusters of similar clicks were identified by incorporating multiple click characteristics (spectral shape and inter-click interval distributions) to distinguish within-type from between-type variation, and identify distinct, persistent click types. Once click types were established, an algorithm for classifying novel detections using existing clusters was tested. The automated classification method was applied to a dataset of 52 million clicks detected across five monitoring sites over two years in the Gulf of Mexico (GOM). Seven distinct click types were identified, one of which is known to be associated with an acoustically identifiable delphinid (Risso's dolphin) and six of which are not yet identified. All types occurred at multiple monitoring locations, but the relative occurrence of types varied, particularly between continental shelf and slope locations. Automatically-identified click types from autonomous seafloor recorders without verifiable species identification were compared with clicks detected on sea-surface towed hydrophone arrays in the presence of visually identified delphinid species. These comparisons suggest potential species identities for the animals producing some echolocation click types. The network-based classification method presented here is effective for rapid, unsupervised delphinid click classification across large datasets in which the click types may not be known a priori.


Assuntos
Biologia Computacional/métodos , Golfinhos/fisiologia , Ecolocação/classificação , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Vocalização Animal/classificação , Algoritmos , Animais , Golfo do México , Espectrografia do Som
13.
PLoS One ; 12(10): e0185585, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29084266

RESUMO

Eastern North Pacific gray whales make one of the longest annual migrations of any mammal, traveling from their summer feeding areas in the Bering and Chukchi Seas to their wintering areas in the lagoons of Baja California, Mexico. Although a significant body of knowledge on gray whale biology and behavior exists, little is known about their vocal behavior while migrating. In this study, we used a sparse hydrophone array deployed offshore of central California to investigate how gray whales behave and use sound while migrating. We detected, localized, and tracked whales for one full migration season, a first for gray whales. We verified and localized 10,644 gray whale M3 calls and grouped them into 280 tracks. Results confirm that gray whales are acoustically active while migrating and their swimming and acoustic behavior changes on daily and seasonal time scales. The seasonal timing of the calls verifies the gray whale migration timing determined using other methods such as counts conducted by visual observers. The total number of calls and the percentage of calls that were part of a track changed significantly over both seasonal and daily time scales. An average calling rate of 5.7 calls/whale/day was observed, which is significantly greater than previously reported migration calling rates. We measured a mean speed of 1.6 m/s and quantified heading, direction, and water depth where tracks were located. Mean speed and water depth remained constant between night and day, but these quantities had greater variation at night. Gray whales produce M3 calls with a root mean square source level of 156.9 dB re 1 µPa at 1 m. Quantities describing call characteristics were variable and dependent on site-specific propagation characteristics.


Assuntos
Migração Animal , Espectrografia do Som/instrumentação , Vocalização Animal , Baleias/fisiologia , Animais , Oceano Pacífico
14.
Sci Rep ; 7(1): 13460, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044130

RESUMO

Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.


Assuntos
Acústica , Baleias , Animais , Oceano Atlântico , Geografia , Dinâmica Populacional , Análise Espacial
15.
J Acoust Soc Am ; 142(3): 1563, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28964105

RESUMO

Underwater radiated noise from merchant ships was measured opportunistically from multiple spatial aspects to estimate signature source levels and directionality. Transiting ships were tracked via the Automatic Identification System in a shipping lane while acoustic pressure was measured at the ships' keel and beam aspects. Port and starboard beam aspects were 15°, 30°, and 45° in compliance with ship noise measurements standards [ANSI/ASA S12.64 (2009) and ISO 17208-1 (2016)]. Additional recordings were made at a 10° starboard aspect. Source levels were derived with a spherical propagation (surface-affected) or a modified Lloyd's mirror model to account for interference from surface reflections (surface-corrected). Ship source depths were estimated from spectral differences between measurements at different beam aspects. Results were exemplified with a 4870 and a 10 036 twenty-foot equivalent unit container ship at 40%-56% and 87% of service speeds, respectively. For the larger ship, opportunistic ANSI/ISO broadband levels were 195 (surface-affected) and 209 (surface-corrected) dB re 1 µPa2 1 m. Directionality at a propeller blade rate of 8 Hz exhibited asymmetries in stern-bow (<6 dB) and port-starboard (<9 dB) direction. Previously reported broadband levels at 10° aspect from McKenna, Ross, Wiggins, and Hildebrand [(2012b). J. Acoust. Soc. Am. 131, 92-103] may be ∼12 dB lower than respective surface-affected ANSI/ISO standard derived levels.

16.
Artigo em Inglês | MEDLINE | ID: mdl-28078425

RESUMO

The Asian longhorned beetle Anoplophora glabripennis (Motchulsky) is an exotic forest pest that has repeatedly invaded North America and Europe from Asia, and has the potential to kill millions of trees and cause billions of dollars in damage. Traps baited with an attractive mixture of volatile organic compounds from hosts have been of limited success in monitoring invasion sites. We propose that lures might be improved through studying the olfactory system of adult beetles, especially the gene family of odorant receptors (ORs) and the structure of the antennal lobes of the brain. Here, we report identification of 132 ORs in the genome of A. glabripennis (inclusive of one Orco gene and 11 pseudogenes), some of which are orthologous to known pheromone receptors of other cerambycid beetles. We also identified three ORs that are strongly biased toward expression in the female transcriptome, and a single OR strongly biased toward males. Three-dimensional reconstruction of the antennal lobes of adults suggested a male-specific macroglomerulus and several enlarged glomeruli in females. We predict that functional characterization of ORs and glomeruli will lead to identification of key odorants in the life history of A. glabripennis that may aid in monitoring and controlling future invasions.


Assuntos
Antenas de Artrópodes/citologia , Antenas de Artrópodes/fisiologia , Besouros/fisiologia , Controle Biológico de Vetores/métodos , Receptores Odorantes/fisiologia , Olfato/fisiologia , Animais , Feminino , Masculino , Filogenia
17.
J Acoust Soc Am ; 140(3): 1918, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27914405

RESUMO

The probability of detecting echolocating delphinids on a near-seafloor sensor was estimated using two Monte Carlo simulation methods. One method estimated the probability of detecting a single click (cue counting); the other estimated the probability of detecting a group of delphinids (group counting). Echolocation click beam pattern and source level assumptions strongly influenced detectability predictions by the cue counting model. Group detectability was also influenced by assumptions about group behaviors. Model results were compared to in situ recordings of encounters with Risso's dolphin (Grampus griseus) and presumed pantropical spotted dolphin (Stenella attenuata) from a near-seafloor four-channel tracking sensor deployed in the Gulf of Mexico (25.537°N 84.632°W, depth 1220 m). Horizontal detection range, received level and estimated source level distributions from localized encounters were compared with the model predictions. Agreement between in situ results and model predictions suggests that simulations can be used to estimate detection probabilities when direct distance estimation is not available.

18.
J Acoust Soc Am ; 140(1): 176, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27475143

RESUMO

The ocean soundscape of the Gulf of Mexico (GOM) has not been well-studied, although it is an important habitat for marine mammals, including sperm and beaked whales, many dolphin species, and a potentially endangered baleen whale species. The GOM is also home to high levels of hydrocarbon exploration and extraction, heavily used commercial shipping ports, and significant fishery industry activity, all of which are known contributors to oceanic noise. From 2010-2013, the soundscape of three deep and two shallow water sites in the GOM were monitored over 10 - 1000 Hz. Average sound pressure spectrum levels were high, >90 dB re 1 µPa(2)/Hz at <40 Hz for the deep water sites and were associated with noise from seismic exploration airguns. More moderate sound pressure levels, <55 dB re 1 µPa(2)/Hz at >700 Hz, were present at a shallow water site in the northeastern Gulf, removed from the zone of industrial development and bathymetrically shielded from deep water anthropogenic sound sources. During passage of a high wind event (Hurricane Isaac, 2012), sound pressure levels above 200 Hz increased with wind speed, but at low frequencies (<100 Hz) sound pressure levels decreased owing to absence of noise from airguns.

19.
J Acoust Soc Am ; 139(5): 2417, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250138

RESUMO

Comparisons of current and historic ocean ambient noise levels are rare, especially in the North Atlantic. Recent (2013-2014) monthly patterns in ocean ambient sound south of Bermuda were compared to those recorded at the same location in 1966. Additionally, trends in ocean traffic, in particular, Panama Canal traffic, over this time were also investigated. One year of ocean ambient noise measurements were collected in 1966 using cabled, omnidirectional hydrophones at the U.S. Navy Tudor Hill Laboratory in Bermuda, and repeat measurements were collected at the same location from June 2013-May 2014 using a High-frequency Acoustic Recording Package. Average monthly pressure spectrum levels at 44 Hz increased 2.8 ± 0.8 dB from 1966 to 2013, indicating an average increase of 0.6 dB/decade. This low level of increase may be due to topographic shielding at this site, limiting it to only southern exposure, and the limit in the number of ship transits through the Panama Canal, which did not change substantially during this time. The impending expansion of the Canal, which will enable the transit of larger ships at twice the current rate, is likely to lead to a substantial increase in ocean ambient sound at this location in the near future.

20.
Sci Rep ; 5: 16343, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26559743

RESUMO

Beaked whales are deep diving elusive animals, difficult to census with conventional visual surveys. Methods are presented for the density estimation of beaked whales, using passive acoustic monitoring data collected at sites in the Gulf of Mexico (GOM) from the period during and following the Deepwater Horizon oil spill (2010-2013). Beaked whale species detected include: Gervais' (Mesoplodon europaeus), Cuvier's (Ziphius cavirostris), Blainville's (Mesoplodon densirostris) and an unknown species of Mesoplodon sp. (designated as Beaked Whale Gulf - BWG). For Gervais' and Cuvier's beaked whales, we estimated weekly animal density using two methods, one based on the number of echolocation clicks, and another based on the detection of animal groups during 5 min time-bins. Density estimates derived from these two methods were in good general agreement. At two sites in the western GOM, Gervais' beaked whales were present throughout the monitoring period, but Cuvier's beaked whales were present only seasonally, with periods of low density during the summer and higher density in the winter. At an eastern GOM site, both Gervais' and Cuvier's beaked whales had a high density throughout the monitoring period.


Assuntos
Acústica , Ecolocação , Vocalização Animal , Baleias , Animais , Geografia , Golfo do México , Densidade Demográfica , Espectrografia do Som
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...