RESUMO
We describe the newest generation of the SLAC Microresonator RF (SMuRF) electronics, a warm digital control and readout system for microwave-frequency resonator-based cryogenic detector and multiplexer systems, such as microwave superconducting quantum interference device multiplexers (µmux) or microwave kinetic inductance detectors. Ultra-sensitive measurements in particle physics and astronomy increasingly rely on large arrays of cryogenic sensors, which in turn necessitate highly multiplexed readout and accompanying room-temperature electronics. Microwave-frequency resonators are a popular tool for cryogenic multiplexing, with the potential to multiplex thousands of detector channels on one readout line. The SMuRF system provides the capability for reading out up to 3328 channels across a 4-8 GHz bandwidth. Notably, the SMuRF system is unique in its implementation of a closed-loop tone-tracking algorithm that minimizes RF power transmitted to the cold amplifier, substantially relaxing system linearity requirements and effective noise from intermodulation products. Here, we present a description of the hardware, firmware, and software systems of the SMuRF electronics, comparing achieved performance with science-driven design requirements. In particular, we focus on the case of large-channel-count, low-bandwidth applications, but the system has been easily reconfigured for high-bandwidth applications. The system described here has been successfully deployed in lab settings and field sites around the world and is baselined for use on upcoming large-scale observatories.
RESUMO
Superconducting qubits are a leading platform for scalable quantum computing and quantum error correction. One feature of this platform is the ability to perform projective measurements orders of magnitude more quickly than qubit decoherence times. Such measurements are enabled by the use of quantum-limited parametric amplifiers in conjunction with ferrite circulators-magnetic devices which provide isolation from noise and decoherence due to amplifier backaction. Because these nonreciprocal elements have limited performance and are not easily integrated on chip, it has been a long-standing goal to replace them with a scalable alternative. Here, we demonstrate a solution to this problem by using a superconducting switch to control the coupling between a qubit and amplifier. Doing so, we measure a transmon qubit using a single, chip-scale device to provide both parametric amplification and isolation from the bulk of amplifier backaction. This measurement is also fast, high fidelity, and has 70% efficiency, comparable to the best that has been reported in any superconducting qubit measurement. As such, this work constitutes a high-quality platform for the scalable measurement of superconducting qubits.
RESUMO
The manipulation of quantum states of light1 holds the potential to enhance searches for fundamental physics. Only recently has the maturation of quantum squeezing technology coincided with the emergence of fundamental physics searches that are limited by quantum uncertainty2,3. In particular, the quantum chromodynamics axion provides a possible solution to two of the greatest outstanding problems in fundamental physics: the strong-CP (charge-parity) problem of quantum chromodynamics4 and the unknown nature of dark matter5-7. In dark matter axion searches, quantum uncertainty manifests as a fundamental noise source, limiting the measurement of the quadrature observables used for detection. Few dark matter searches have approached this limit3,8, and until now none has exceeded it. Here we use vacuum squeezing to circumvent the quantum limit in a search for dark matter. By preparing a microwave-frequency electromagnetic field in a squeezed state and near-noiselessly reading out only the squeezed quadrature9, we double the search rate for axions over a mass range favoured by some recent theoretical projections10,11. We find no evidence of dark matter within the axion rest energy windows of 16.96-17.12 and 17.14-17.28 microelectronvolts. Breaking through the quantum limit invites an era of fundamental physics searches in which noise reduction techniques yield unbounded benefit compared with the diminishing returns of approaching the quantum limit.
RESUMO
Feature sizes in integrated circuits have decreased substantially over time, and it has become increasingly difficult to three-dimensionally image these complex circuits after fabrication. This can be important for process development, defect analysis, and detection of unexpected structures in externally sourced chips, among other applications. Here, we report on a non-destructive, tabletop approach that addresses this imaging problem through x-ray tomography, which we uniquely realize with an instrument that combines a scanning electron microscope (SEM) with a transition-edge sensor (TES) x-ray spectrometer. Our approach uses the highly focused SEM electron beam to generate a small x-ray generation region in a carefully designed target layer that is placed over the sample being tested. With the high collection efficiency and resolving power of a TES spectrometer, we can isolate x-rays generated in the target from background and trace their paths through regions of interest in the sample layers, providing information about the various materials along the x-ray paths through their attenuation functions. We have recently demonstrated our approach using a 240 Mo/Cu bilayer TES prototype instrument on a simplified test sample containing features with sizes of â¼ 1 µm. Currently, we are designing and building a 3000 Mo/Au bilayer TES spectrometer upgrade, which is expected to improve the imaging speed by factor of up to 60 through a combination of increased detector number and detector speed.
RESUMO
Transition-edge sensors (TESs) are two-dimensional superconducting films utilized as highly sensitive detectors of energy or power. These detectors are voltage biased in the superconducting-normal transition where the film resistance is both finite and a strong function of temperature. Unfortunately, the amount of electrical noise observed in TESs exceeds the predictions of existing noise theories. We describe a possible mechanism for the unexplained excess noise, which we term "mixed-down noise." The source is Johnson noise, which is mixed down to low frequencies by Josephson oscillations in devices with a nonlinear current-voltage relationship. We derive an expression for the power spectral density of this noise and show that its predictions agree with measured data.
RESUMO
We present results obtained with a new soft X-ray spectrometer based on transition-edge sensors (TESs) composed of Mo/Cu bilayers coupled to bismuth absorbers. This spectrometer simultaneously provides excellent energy resolution, high detection efficiency, and broadband spectral coverage. The new spectrometer is optimized for incident X-ray energies below 2 keV. Each pixel serves as both a highly sensitive calorimeter and an X-ray absorber with near unity quantum efficiency. We have commissioned this 240-pixel TES spectrometer at the Stanford Synchrotron Radiation Lightsource beamline 10-1 (BL 10-1) and used it to probe the local electronic structure of sample materials with unprecedented sensitivity in the soft X-ray regime. As mounted, the TES spectrometer has a maximum detection solid angle of 2 × 10-3 sr. The energy resolution of all pixels combined is 1.5 eV full width at half maximum at 500 eV. We describe the performance of the TES spectrometer in terms of its energy resolution and count-rate capability and demonstrate its utility as a high throughput detector for synchrotron-based X-ray spectroscopy. Results from initial X-ray emission spectroscopy and resonant inelastic X-ray scattering experiments obtained with the spectrometer are presented.
RESUMO
We present a superconducting micro-resonator array fabrication method that is scalable and reconfigurable and has been optimized for high multiplexing factors. The method uses uniformly sized tiles patterned on stepper photolithography reticles as the building blocks of an array. We demonstrate this technique on a 101-element microwave kinetic inductance detector (MKID) array made from a titanium-nitride superconducting film. Characterization reveals 1.5% maximum fractional frequency spacing deviations caused primarily by material parameters that vary smoothly across the wafer. However, local deviations exhibit a Gaussian distribution in fractional frequency spacing with a standard deviation of 2.7 × 10-3. We exploit this finding to increase the yield of the BLAST-TNG 250 µm production wafer by placing resonators in the array close in both physical and frequency space. This array consists of 1836 polarization-sensitive MKIDs wired in three multiplexing groups. We present the array design and show that the achieved yield is consistent with our model of frequency collisions and is comparable to what has been achieved in other low temperature detector technologies.
RESUMO
We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.
RESUMO
The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. These results are compared to previously published transient X-ray absorption measurements on the same reaction and found to be consistent with the results from Ogi et al. and inconsistent with the results of Chen et al. ( Ogi , Y. ; et al. Struct. Dyn. 2015 , 2 , 034901 ; Chen , J. ; Zhang , H. ; Tomov , I. V. ; Ding , X. ; Rentzepis , P. M. Chem. Phys. Lett. 2007 , 437 , 50 - 55 ). We provide quantitative limits on the Fe-O bond length change. Finally, we review potential improvements to our measurement technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.
RESUMO
PURPOSE: Prototype phantoms were designed, constructed, and characterized for the purpose of calibrating ultralow field magnetic resonance imaging (ULF MRI) systems. The phantoms were designed to measure spatial resolution and to quantify sensitivity to systematic variation of proton density and relaxation time, T1 . METHODS: The phantoms were characterized first with conventional magnetic resonance scanners at 1.5 and 3 T, and subsequently with a prototype ULF MRI scanner between 107 and 128 µT . RESULTS: The ULF system demonstrated a 2-mm spatial resolution and, using T1 measurements, distinguished aqueous solutions of MnCl2 differing by 20 µM [Mn(2+) ]. CONCLUSION: The prototype phantoms proved well-matched to ULF MRI applications, and allowed direct comparison of the performance of ULF and clinical systems.
Assuntos
Interpretação de Imagem Assistida por Computador/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Projetos Piloto , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
SCUBA-2 is a submillimeter camera being built for the James Clerk Maxwell Telescope in Hawaii. Bringing CCD style imaging to the submillimeter for the first time, with over 10000 pixels, it will provide a revolutionary improvement in sensitivity and mapping speed. We present results of the first tests on a prototype 1280 pixel SCUBA-2 subarray; the full instrument will be made up of eight such subarrays. The array is made up of transition edge sensor (TES) detectors, with Mo/Cu bilayers as the sensing element. To keep the number of wires reasonable, a multiplexed readout is used. Unlike previous TES arrays, an in-focal plane multiplexer configuration is used, in which the multiplexing elements are located beneath each pixel. To achieve the required performance, the detectors are operated at a temperature of approximately 120 mK. We describe the results of a basic electrical and optical characterization of the array, demonstrating that it is fully operational. Noise measurements were made on several pixels and gave a noise equivalent power below 2.5 x 10(-17) W HZ(-0.5), within the requirements for SCUBA-2. The construction of the testbed used to carry out these measurements is also described.