Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Nat Genet ; 53(2): 135-142, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33495597

RESUMO

Hypertrophic cardiomyopathy (HCM) is a common, serious, genetic heart disorder. Rare pathogenic variants in sarcomere genes cause HCM, but with unexplained phenotypic heterogeneity. Moreover, most patients do not carry such variants. We report a genome-wide association study of 2,780 cases and 47,486 controls that identified 12 genome-wide-significant susceptibility loci for HCM. Single-nucleotide polymorphism heritability indicated a strong polygenic influence, especially for sarcomere-negative HCM (64% of cases; h2g = 0.34 ± 0.02). A genetic risk score showed substantial influence on the odds of HCM in a validation study, halving the odds in the lowest quintile and doubling them in the highest quintile, and also influenced phenotypic severity in sarcomere variant carriers. Mendelian randomization identified diastolic blood pressure (DBP) as a key modifiable risk factor for sarcomere-negative HCM, with a one standard deviation increase in DBP increasing the HCM risk fourfold. Common variants and modifiable risk factors have important roles in HCM that we suggest will be clinically actionable.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33284039

RESUMO

Background - The impact of sex on phenotypic expression in hypertrophic cardiomyopathy (HCM) has not been well characterized in genotyped cohorts. Methods - Retrospective cohort study from an international registry of patients receiving care at experienced HCM centers. Sex-based differences in baseline characteristics and clinical outcomes were assessed. Results - Of 5,873 patients (3,788 genotyped), 2,226 (37.9%) were women. At baseline, women were older (49.0±19.9 vs. 42.9±18.4 years, p<0.001) and more likely to have pathogenic/likely-pathogenic sarcomeric variants (SARC+; 51% vs 43%, p<0.001) despite equivalent utilization of genetic testing. Age at diagnosis varied by sex and genotype despite similar distribution of causal genes. Women were 3.6 to 7.1 years older at diagnosis (p<0.02) except for patients with MYH7 variants where age at diagnosis was comparable for women and men (n=492; 34.8±19.2 vs 33.3±16.8 years, p=0.39). Over 7.7 median years of follow up, NYHA III-IV heart failure (HF) was more common in women (HR 1.87, CI 1.48-2.36, p<0.001), after controlling for their higher burden of symptoms and outflow tract obstruction at baseline, reduced ejection fraction, SARC+, age and hypertension. All-cause mortality was increased in women (HR 1.50, CI 1.13-1.99, p<0.01), but neither ICD utilization nor ventricular arrhythmia varied by sex. Conclusions - In HCM, women are older at diagnosis, partly modified by genetic substrate. Regardless of genotype, women were at higher risk of mortality and developing severe HF symptoms. This points to a sex-effect on long-term myocardial performance in HCM, which should be investigated further.

4.
Heart ; 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172912

RESUMO

Genetic testing in hypertrophic cardiomyopathy (HCM) is a valuable tool to manage patients and their families. Genetic testing can help inform diagnosis and differentiate HCM from other disorders that also result in increased left ventricular wall thickness, thereby directly impacting treatment. Moreover, genetic testing can definitively identify at-risk relatives and focus family management. Pathogenic variants in sarcomere and sarcomere-related genes have been implicated in causing HCM, and targeted gene panel testing is recommended for patients once a clinical diagnosis has been established. If a pathogenic or likely pathogenic variant is identified in a patient with HCM, predictive genetic testing is recommended for their at-risk relatives to determine who is at risk and to guide longitudinal screening and risk stratification. However, there are important challenges and considerations to implementing genetic testing in clinical practice. Genetic testing results can have psychological and other implications for patients and their families, emphasising the importance of genetic counselling before and after genetic testing. Determining the clinical relevance of genetic testing results is also complex and requires expertise in understanding of human genetic variation and clinical manifestations of the disease. In this review, we discuss the genetics of HCM and how to integrate genetic testing in clinical practice.

6.
Genet Med ; 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33046849

RESUMO

PURPOSE: Accurate discrimination of benign and pathogenic rare variation remains a priority for clinical genome interpretation. State-of-the-art machine learning variant prioritization tools are imprecise and ignore important parameters defining gene-disease relationships, e.g., distinct consequences of gain-of-function versus loss-of-function variants. We hypothesized that incorporating disease-specific information would improve tool performance. METHODS: We developed a disease-specific variant classifier, CardioBoost, that estimates the probability of pathogenicity for rare missense variants in inherited cardiomyopathies and arrhythmias. We assessed CardioBoost's ability to discriminate known pathogenic from benign variants, prioritize disease-associated variants, and stratify patient outcomes. RESULTS: CardioBoost has high global discrimination accuracy (precision recall area under the curve [AUC] 0.91 for cardiomyopathies; 0.96 for arrhythmias), outperforming existing tools (4-24% improvement). CardioBoost obtains excellent accuracy (cardiomyopathies 90.2%; arrhythmias 91.9%) for variants classified with >90% confidence, and increases the proportion of variants classified with high confidence more than twofold compared with existing tools. Variants classified as disease-causing are associated with both disease status and clinical severity, including a 21% increased risk (95% confidence interval [CI] 11-29%) of severe adverse outcomes by age 60 in patients with hypertrophic cardiomyopathy. CONCLUSIONS: A disease-specific variant classifier outperforms state-of-the-art genome-wide tools for rare missense variants in inherited cardiac conditions ( https://www.cardiodb.org/cardioboost/ ), highlighting broad opportunities for improved pathogenicity prediction through disease specificity.

7.
Circ Heart Fail ; 13(9): e007230, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32894986

RESUMO

BACKGROUND: Over the last 50 years, the epidemiology of hypertrophic cardiomyopathy (HCM) has changed because of increased awareness and availability of advanced diagnostic tools. We aim to describe the temporal trends in age, sex, and clinical characteristics at HCM diagnosis over >4 decades. METHODS: We retrospectively analyzed records from the ongoing multinational Sarcomeric Human Cardiomyopathy Registry. Overall, 7286 patients with HCM diagnosed at an age ≥18 years between 1961 and 2019 were included in the analysis and divided into 3 eras of diagnosis (<2000, 2000-2010, >2010). RESULTS: Age at diagnosis increased markedly over time (40±14 versus 47±15 versus 51±16 years, P<0.001), both in US and non-US sites, with a stable male-to-female ratio of about 3:2. Frequency of familial HCM declined over time (38.8% versus 34.3% versus 32.7%, P<0.001), as well as heart failure symptoms at presentation (New York Heart Association III/IV: 18.1% versus 15.8% versus 12.6%, P<0.001). Left ventricular hypertrophy became less marked over time (maximum wall thickness: 20±6 versus 18±5 versus 17±5 mm, P<0.001), while prevalence of obstructive HCM was greater in recent cohorts (peak gradient >30 mm Hg: 31.9% versus 39.3% versus 39.0%, P=0.001). Consistent with decreasing phenotypic severity, yield of pathogenic/likely pathogenic variants at genetic testing decreased over time (57.7% versus 45.6% versus 38.4%, P<0.001). CONCLUSIONS: Evolving HCM populations include progressively greater representation of older patients with sporadic disease, mild phenotypes, and genotype-negative status. Such trend suggests a prominent role of imaging over genetic testing in promoting HCM diagnoses and urges efforts to understand genotype-negative disease eluding the classic monogenic paradigm.

8.
Lancet ; 396(10253): 759-769, 2020 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-32871100

RESUMO

BACKGROUND: Cardiac muscle hypercontractility is a key pathophysiological abnormality in hypertrophic cardiomyopathy, and a major determinant of dynamic left ventricular outflow tract (LVOT) obstruction. Available pharmacological options for hypertrophic cardiomyopathy are inadequate or poorly tolerated and are not disease-specific. We aimed to assess the efficacy and safety of mavacamten, a first-in-class cardiac myosin inhibitor, in symptomatic obstructive hypertrophic cardiomyopathy. METHODS: In this phase 3, randomised, double-blind, placebo-controlled trial (EXPLORER-HCM) in 68 clinical cardiovascular centres in 13 countries, patients with hypertrophic cardiomyopathy with an LVOT gradient of 50 mm Hg or greater and New York Heart Association (NYHA) class II-III symptoms were assigned (1:1) to receive mavacamten (starting at 5 mg) or placebo for 30 weeks. Visits for assessment of patient status occurred every 2-4 weeks. Serial evaluations included echocardiogram, electrocardiogram, and blood collection for laboratory tests and mavacamten plasma concentration. The primary endpoint was a 1·5 mL/kg per min or greater increase in peak oxygen consumption (pVO2) and at least one NYHA class reduction or a 3·0 mL/kg per min or greater pVO2 increase without NYHA class worsening. Secondary endpoints assessed changes in post-exercise LVOT gradient, pVO2, NYHA class, Kansas City Cardiomyopathy Questionnaire-Clinical Summary Score (KCCQ-CSS), and Hypertrophic Cardiomyopathy Symptom Questionnaire Shortness-of-Breath subscore (HCMSQ-SoB). This study is registered with ClinicalTrials.gov, NCT03470545. FINDINGS: Between May 30, 2018, and July 12, 2019, 429 adults were assessed for eligibility, of whom 251 (59%) were enrolled and randomly assigned to mavacamten (n=123 [49%]) or placebo (n=128 [51%]). 45 (37%) of 123 patients on mavacamten versus 22 (17%) of 128 on placebo met the primary endpoint (difference +19·4%, 95% CI 8·7 to 30·1; p=0·0005). Patients on mavacamten had greater reductions than those on placebo in post-exercise LVOT gradient (-36 mm Hg, 95% CI -43·2 to -28·1; p<0·0001), greater increase in pVO2 (+1·4 mL/kg per min, 0·6 to 2·1; p=0·0006), and improved symptom scores (KCCQ-CSS +9·1, 5·5 to 12·7; HCMSQ-SoB -1·8, -2·4 to -1·2; p<0·0001). 34% more patients in the mavacamten group improved by at least one NYHA class (80 of 123 patients in the mavacamten group vs 40 of 128 patients in the placebo group; 95% CI 22·2 to 45·4; p<0·0001). Safety and tolerability were similar to placebo. Treatment-emergent adverse events were generally mild. One patient died by sudden death in the placebo group. INTERPRETATION: Treatment with mavacamten improved exercise capacity, LVOT obstruction, NYHA functional class, and health status in patients with obstructive hypertrophic cardiomyopathy. The results of this pivotal trial highlight the benefits of disease-specific treatment for this condition. FUNDING: MyoKardia.


Assuntos
Benzilaminas/uso terapêutico , Miosinas Cardíacas/antagonistas & inibidores , Cardiomiopatia Hipertrófica/tratamento farmacológico , Uracila/análogos & derivados , Antagonistas Adrenérgicos beta/uso terapêutico , Idoso , Benzilaminas/efeitos adversos , Bloqueadores dos Canais de Cálcio/uso terapêutico , Cardiomiopatia Hipertrófica/fisiopatologia , Fármacos Cardiovasculares/uso terapêutico , Método Duplo-Cego , Tolerância ao Exercício/fisiologia , Feminino , Hemodinâmica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Avaliação de Resultados da Assistência ao Paciente , Uracila/efeitos adversos , Uracila/uso terapêutico
9.
Circ Genom Precis Med ; 13(5): 396-405, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32841044

RESUMO

BACKGROUND: Pathogenic variants in MYBPC3, encoding cardiac MyBP-C (myosin binding protein C), are the most common cause of familial hypertrophic cardiomyopathy. A large number of unique MYBPC3 variants and relatively small genotyped hypertrophic cardiomyopathy cohorts have precluded detailed genotype-phenotype correlations. METHODS: Patients with hypertrophic cardiomyopathy and MYBPC3 variants were identified from the Sarcomeric Human Cardiomyopathy Registry. Variant types and locations were analyzed, morphological severity was assessed, and time-event analysis was performed (composite clinical outcome of sudden death, class III/IV heart failure, left ventricular assist device/transplant, atrial fibrillation). For selected missense variants falling in enriched domains, myofilament localization and degradation rates were measured in vitro. RESULTS: Among 4756 genotyped patients with hypertrophic cardiomyopathy in Sarcomeric Human Cardiomyopathy Registry, 1316 patients were identified with adjudicated pathogenic truncating (N=234 unique variants, 1047 patients) or nontruncating (N=22 unique variants, 191 patients) variants in MYBPC3. Truncating variants were evenly dispersed throughout the gene, and hypertrophy severity and outcomes were not associated with variant location (grouped by 5'-3' quartiles or by founder variant subgroup). Nontruncating pathogenic variants clustered in the C3, C6, and C10 domains (18 of 22, 82%, P<0.001 versus Genome Aggregation Database common variants) and were associated with similar hypertrophy severity and adverse event rates as observed with truncating variants. MyBP-C with variants in the C3, C6, and C10 domains was expressed in rat ventricular myocytes. C10 mutant MyBP-C failed to incorporate into myofilaments and degradation rates were accelerated by ≈90%, while C3 and C6 mutant MyBP-C incorporated normally with degradation rate similar to wild-type. CONCLUSIONS: Truncating variants account for 91% of MYBPC3 pathogenic variants and cause similar clinical severity and outcomes regardless of location, consistent with locus-independent loss-of-function. Nontruncating MYBPC3 pathogenic variants are regionally clustered, and a subset also cause loss of function through failure of myofilament incorporation and rapid degradation. Cardiac morphology and clinical outcomes are similar in patients with truncating versus nontruncating variants.

10.
Circ Heart Fail ; 13(6): e006853, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32498620

RESUMO

BACKGROUND: Obstructive hypertrophic cardiomyopathy (oHCM) is characterized by unexplained left ventricular (LV) hypertrophy associated with dynamic LV outflow tract obstruction. Current medical therapies are nonspecific and have limited efficacy in relieving symptoms. Mavacamten is a first-in-class targeted inhibitor of cardiac myosin, which has been shown to reduce LV outflow tract obstruction, improve exercise capacity, and relieve symptoms of oHCM in the PIONEER-HCM phase 2 study. METHODS: EXPLORER-HCM is a multicenter, phase 3, randomized, double-blind, placebo-controlled trial to investigate the efficacy and safety of mavacamten in treating symptomatic oHCM. Eligible adults with oHCM and New York Heart Association Functional Class II or III are randomized 1:1 to receive once-daily, oral mavacamten, or matching placebo for 30 weeks. The primary composite functional end point is clinical response at week 30 compared to baseline defined as either (1) an increase in peak oxygen consumption ≥1.5 mL/kg/min and reduction of at least one New York Heart Association class; or (2) an improvement of ≥3.0 mL/kg/min in peak oxygen consumption with no worsening of New York Heart Association class. Secondary end points include change in postexercise LV outflow tract gradient, New York Heart Association class, peak oxygen consumption, and patient-reported outcomes assessed by the Kansas City Cardiomyopathy Questionnaire and a novel HCM-specific instrument. Exploratory end points aim to characterize the effect of mavacamten on multiple aspects of oHCM pathophysiology. CONCLUSIONS: EXPLORER-HCM is a phase 3 trial in oHCM testing a first-in-class, targeted strategy of myosin inhibition to improve symptom burden and exercise capacity through reducing LV outflow tract obstruction. Results of this trial will provide evidence to support the first disease-specific treatment for HCM. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03470545.


Assuntos
Benzilaminas/uso terapêutico , Cardiomiopatia Hipertrófica/tratamento farmacológico , Fármacos Cardiovasculares/uso terapêutico , Uracila/análogos & derivados , Benzilaminas/efeitos adversos , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/fisiopatologia , Fármacos Cardiovasculares/efeitos adversos , Ensaios Clínicos Fase III como Assunto , Método Duplo-Cego , Tolerância ao Exercício/efeitos dos fármacos , Humanos , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Recuperação de Função Fisiológica , Resultado do Tratamento , Uracila/efeitos adversos , Uracila/uso terapêutico , Função Ventricular Esquerda/efeitos dos fármacos
11.
Circulation ; 142(3): 217-229, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32418493

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy is the leading cause of sudden cardiac death (SCD) in children and young adults. Our objective was to develop and validate a SCD risk prediction model in pediatric hypertrophic cardiomyopathy to guide SCD prevention strategies. METHODS: In an international multicenter observational cohort study, phenotype-positive patients with isolated hypertrophic cardiomyopathy <18 years of age at diagnosis were eligible. The primary outcome variable was the time from diagnosis to a composite of SCD events at 5-year follow-up: SCD, resuscitated sudden cardiac arrest, and aborted SCD, that is, appropriate shock following primary prevention implantable cardioverter defibrillators. Competing risk models with cause-specific hazard regression were used to identify and quantify clinical and genetic factors associated with SCD. The cause-specific regression model was implemented using boosting, and tuned with 10 repeated 4-fold cross-validations. The final model was fitted using all data with the tuned hyperparameter value that maximizes the c-statistic, and its performance was characterized by using the c-statistic for competing risk models. The final model was validated in an independent external cohort (SHaRe [Sarcomeric Human Cardiomyopathy Registry], n=285). RESULTS: Overall, 572 patients met eligibility criteria with 2855 patient-years of follow-up. The 5-year cumulative proportion of SCD events was 9.1% (14 SCD, 25 resuscitated sudden cardiac arrests, and 14 aborted SCD). Risk predictors included age at diagnosis, documented nonsustained ventricular tachycardia, unexplained syncope, septal diameter z-score, left ventricular posterior wall diameter z score, left atrial diameter z score, peak left ventricular outflow tract gradient, and presence of a pathogenic variant. Unlike in adults, left ventricular outflow tract gradient had an inverse association, and family history of SCD had no association with SCD. Clinical and clinical/genetic models were developed to predict 5-year freedom from SCD. Both models adequately discriminated between patients with and without SCD events with a c-statistic of 0.75 and 0.76, respectively, and demonstrated good agreement between predicted and observed events in the primary and validation cohorts (validation c-statistic 0.71 and 0.72, respectively). CONCLUSION: Our study provides a validated SCD risk prediction model with >70% prediction accuracy and incorporates risk factors that are unique to pediatric hypertrophic cardiomyopathy. An individualized risk prediction model has the potential to improve the application of clinical practice guidelines and shared decision making for implantable cardioverter defibrillator insertion. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT0403679.

12.
J Am Coll Cardiol ; 75(21): 2649-2660, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32466879

RESUMO

BACKGROUND: Patients with nonobstructive hypertrophic cardiomyopathy (nHCM) often experience a high burden of symptoms; however, there are no proven pharmacological therapies. By altering the contractile mechanics of the cardiomyocyte, myosin inhibitors have the potential to modify pathophysiology and improve symptoms associated with HCM. OBJECTIVES: MAVERICK-HCM (Mavacamten in Adults With Symptomatic Non-Obstructive Hypertrophic Cardiomyopathy) explored the safety and efficacy of mavacamten, a first-in-class reversible inhibitor of cardiac-specific myosin, in nHCM. METHODS: The MAVERICK-HCM trial was a multicenter, double-blind, placebo-controlled, dose-ranging phase II study in adults with symptomatic nHCM (New York Heart Association functional class II/III), left ventricular ejection fraction (LVEF) ≥55%, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) ≥300 pg/ml. Participants were randomized 1:1:1 to mavacamten at a pharmacokinetic-adjusted dose (targeting plasma levels of 200 or 500 ng/ml), or placebo for 16 weeks, followed by an 8-week washout. Initial dose was 5 mg daily with 1 dose titration at week 6. RESULTS: Fifty-nine participants were randomized (19, 21, 19 patients to 200 ng/ml, 500 ng/ml, placebo, respectively). Their mean age was 54 years, and 58% were women. Serious adverse events occurred in 10% of participants on mavacamten and in 21% participants on placebo. Five participants on mavacamten had reversible reduction in LVEF ≤45%. NT-proBNP geometric mean decreased by 53% in the pooled mavacamten group versus 1% in the placebo group, with geometric mean differences of -435 and -6 pg/ml, respectively (p = 0.0005). Cardiac troponin I (cTnI) geometric mean decreased by 34% in the pooled mavacamten group versus a 4% increase in the placebo group, with geometric mean differences of -0.008 and 0.001 ng/ml, respectively (p = 0.009). CONCLUSIONS: Mavacamten, a novel myosin inhibitor, was well tolerated in most subjects with symptomatic nHCM. Furthermore, treatment was associated with a significant reduction in NT-proBNP and cTnI, suggesting improvement in myocardial wall stress. These results set the stage for future studies of mavacamten in this patient population using clinical parameters, including LVEF, to guide dosing. (A Phase 2 Study of Mavacamten in Adults With Symptomatic Non-Obstructive Hypertrophic Cardiomyopathy [MAVERICK-HCM]; NCT03442764).

13.
PLoS One ; 15(5): e0232427, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32369506

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most frequent genetic cardiac disease with a prevalence of 1:500 to 1:200. While most patients show obstructive HCM and a relatively stable clinical phenotype (stage II), a small group of patients progresses to end-stage HCM (stage IV) within a relatively brief period. Previous research has shown sex-differences in stage II HCM with more diastolic dysfunction in female than in male patients. Moreover, female patients more often show progression to heart failure. Here we investigated if differences in functional and structural properties of the heart may underlie sex-differences in disease progression from stage II to stage IV HCM. Cardiac tissue from stage II and IV patients was obtained during myectomy (n = 54) and heart transplantation (n = 10), respectively. Isometric force was measured in membrane-permeabilized cardiomyocytes to define active and passive myofilament force development. Titin isoform composition was assessed using gel electrophoresis, and the amount of fibrosis and capillary density were determined with histology. In accordance with disease stage-dependent adverse cardiac remodeling end-stage patients showed a thinner interventricular septal wall and larger left ventricular and atrial diameters compared to stage II patients. Cardiomyocyte contractile properties and fibrosis were comparable between stage II and IV, while capillary density was significantly lower in stage IV compared to stage II. Women showed more adverse cellular remodeling compared to men at stage II, evident from more compliant titin, more fibrosis and lower capillary density. However, the disease stage-dependent reduction in capillary density was largest in men. In conclusion, the more severe cellular remodeling in female compared to male stage II patients suggests a more advanced disease stage at the time of myectomy in women. Changes in cardiomyocyte contractile properties do not explain the progression of stage II to stage IV, while reduced capillary density may underlie disease progression to end-stage heart failure.


Assuntos
Cardiomiopatia Hipertrófica/patologia , Remodelação Ventricular/fisiologia , Adolescente , Adulto , Idoso , Capilares/patologia , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/genética , Estudos de Casos e Controles , Criança , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Cadeias Pesadas de Miosina/genética , Fatores de Risco , Caracteres Sexuais , Troponina T/genética , Remodelação Ventricular/genética , Adulto Jovem
14.
Open Heart ; 7(1): e001220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341788

RESUMO

Objective: The myosin-binding protein C (MYBPC3) c.927-2A>G founder mutation accounts for >90% of sarcomeric hypertrophic cardiomyopathy (HCM) in Iceland. This cross-sectional observational study explored the penetrance and phenotypic burden among carriers of this single, prevalent founder mutation. Methods: We studied 60 probands with HCM caused by MYBPC3 c.927-2A>G and 225 first-degree relatives. All participants underwent comprehensive clinical evaluation and relatives were genotyped. Results: Genetic and clinical evaluation of relatives identified 49 genotype-positive (G+) relatives with left ventricular hypertrophy (G+/LVH+), 59 G+without LVH (G+/LVH-) and 117 genotype-negative relatives (unaffected). Compared with HCM probands, G+/LVH+ relatives were older at HCM diagnosis, had less LVH, a less prevalent diastolic dysfunction, fewer ECG abnormalities, lower serum N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin I levels, and fewer symptoms. The penetrance of HCM was influenced by age and sex; specifically, LVH was present in 39% of G+males but only 9% of G+females under age 40 years (p=0.015), versus 86% and 83%, respectively, after age 60 (p=0.89). G+/LVH- subjects had normal wall thicknesses, diastolic function and NT-proBNP levels, but subtle changes in LV geometry and more ECG abnormalities than their unaffected relatives. Conclusions: Phenotypic expression of the Icelandic MYBPC3 founder mutation varies by age, sex and proband status. Men are more likely to have LVH at a younger age, and disease manifestations were more prominent in probands than in relatives identified via family screening. G+/LVH- individuals had subtle clinical differences from unaffected relatives well into adulthood, indicating subclinical phenotypic expression of the pathogenic mutation.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Efeito Fundador , Heterozigoto , Mutação , Sarcômeros/genética , Função Ventricular Esquerda/genética , Remodelação Ventricular/genética , Adulto , Idade de Início , Idoso , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/fisiopatologia , Estudos Transversais , Feminino , Predisposição Genética para Doença , Hemodinâmica/genética , Hereditariedade , Humanos , Islândia , Masculino , Pessoa de Meia-Idade , Linhagem , Penetrância , Fenótipo , Fatores de Risco
15.
Circulation ; 141(17): 1371-1383, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32228044

RESUMO

BACKGROUND: The term "end stage" has been used to describe hypertrophic cardiomyopathy (HCM) with left ventricular systolic dysfunction (LVSD), defined as occurring when left ventricular ejection fraction is <50%. The prognosis of HCM-LVSD has reportedly been poor, but because of its relative rarity, the natural history remains incompletely characterized. METHODS: Data from 11 high-volume HCM specialty centers making up the international SHaRe Registry (Sarcomeric Human Cardiomyopathy Registry) were used to describe the natural history of patients with HCM-LVSD. Cox proportional hazards models were used to identify predictors of prognosis and incident development. RESULTS: From a cohort of 6793 patients with HCM, 553 (8%) met the criteria for HCM-LVSD. Overall, 75% of patients with HCM-LVSD experienced clinically relevant events, and 35% met the composite outcome (all-cause death [n=128], cardiac transplantation [n=55], or left ventricular assist device implantation [n=9]). After recognition of HCM-LVSD, the median time to composite outcome was 8.4 years. However, there was substantial individual variation in natural history. Significant predictors of the composite outcome included the presence of multiple pathogenic/likely pathogenic sarcomeric variants (hazard ratio [HR], 5.6 [95% CI, 2.3-13.5]), atrial fibrillation (HR, 2.6 [95% CI, 1.7-3.5]), and left ventricular ejection fraction <35% (HR, 2.0 [95% CI, 1.3-2.8]). The incidence of new HCM-LVSD was ≈7.5% over 15 years. Significant predictors of developing incident HCM-LVSD included greater left ventricular cavity size (HR, 1.1 [95% CI, 1.0-1.3] and wall thickness (HR, 1.3 [95% CI, 1.1-1.4]), left ventricular ejection fraction of 50% to 60% (HR, 1.8 [95% CI, 1.2, 2.8]-2.8 [95% CI, 1.8-4.2]) at baseline evaluation, the presence of late gadolinium enhancement on cardiac magnetic resonance imaging (HR, 2.3 [95% CI, 1.0-4.9]), and the presence of a pathogenic/likely pathogenic sarcomeric variant, particularly in thin filament genes (HR, 1.5 [95% CI, 1.0-2.1] and 2.5 [95% CI, 1.2-5.1], respectively). CONCLUSIONS: HCM-LVSD affects ≈8% of patients with HCM. Although the natural history of HCM-LVSD was variable, 75% of patients experienced adverse events, including 35% experiencing a death equivalent an estimated median time of 8.4 years after developing systolic dysfunction. In addition to clinical features, genetic substrate appears to play a role in both prognosis (multiple sarcomeric variants) and the risk for incident development of HCM-LVSD (thin filament variants).

17.
Circulation ; 141(10): 828-842, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31983222

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is caused by pathogenic variants in sarcomere protein genes that evoke hypercontractility, poor relaxation, and increased energy consumption by the heart and increased patient risks for arrhythmias and heart failure. Recent studies show that pathogenic missense variants in myosin, the molecular motor of the sarcomere, are clustered in residues that participate in dynamic conformational states of sarcomere proteins. We hypothesized that these conformations are essential to adapt contractile output for energy conservation and that pathophysiology of HCM results from destabilization of these conformations. METHODS: We assayed myosin ATP binding to define the proportion of myosins in the super relaxed state (SRX) conformation or the disordered relaxed state (DRX) conformation in healthy rodent and human hearts, at baseline and in response to reduced hemodynamic demands of hibernation or pathogenic HCM variants. To determine the relationships between myosin conformations, sarcomere function, and cell biology, we assessed contractility, relaxation, and cardiomyocyte morphology and metabolism, with and without an allosteric modulator of myosin ATPase activity. We then tested whether the positions of myosin variants of unknown clinical significance that were identified in patients with HCM, predicted functional consequences and associations with heart failure and arrhythmias. RESULTS: Myosins undergo physiological shifts between the SRX conformation that maximizes energy conservation and the DRX conformation that enables cross-bridge formation with greater ATP consumption. Systemic hemodynamic requirements, pharmacological modulators of myosin, and pathogenic myosin missense mutations influenced the proportions of these conformations. Hibernation increased the proportion of myosins in the SRX conformation, whereas pathogenic variants destabilized these and increased the proportion of myosins in the DRX conformation, which enhanced cardiomyocyte contractility, but impaired relaxation and evoked hypertrophic remodeling with increased energetic stress. Using structural locations to stratify variants of unknown clinical significance, we showed that the variants that destabilized myosin conformations were associated with higher rates of heart failure and arrhythmias in patients with HCM. CONCLUSIONS: Myosin conformations establish work-energy equipoise that is essential for life-long cellular homeostasis and heart function. Destabilization of myosin energy-conserving states promotes contractile abnormalities, morphological and metabolic remodeling, and adverse clinical outcomes in patients with HCM. Therapeutic restabilization corrects cellular contractile and metabolic phenotypes and may limit these adverse clinical outcomes in patients with HCM.


Assuntos
Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/metabolismo , Mutação de Sentido Incorreto/genética , Miócitos Cardíacos/fisiologia , Cadeias Pesadas de Miosina/genética , Sarcômeros/metabolismo , Adenosina Trifosfatases , Animais , Cardiomiopatia Hipertrófica/genética , Células Cultivadas , Metabolismo Energético , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Simulação de Dinâmica Molecular , Relaxamento Muscular , Contração Miocárdica , Miócitos Cardíacos/citologia , Conformação Proteica , Sarcômeros/genética
18.
JAMA Cardiol ; 5(1): 83-91, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31799990

RESUMO

Importance: Racial differences are recognized in multiple cardiovascular parameters, including left ventricular hypertrophy and heart failure, which are 2 major manifestations of hypertrophic cardiomyopathy. The association of race with disease expression and outcomes among patients with hypertrophic cardiomyopathy is not well characterized. Objective: To assess the association between race, disease expression, care provision, and clinical outcomes among patients with hypertrophic cardiomyopathy. Design, Setting, and Participants: This retrospective cohort study included data on black and white patients with hypertrophic cardiomyopathy from the US-based sites of the Sarcomeric Human Cardiomyopathy Registry from 1989 through 2018. Exposures: Self-identified race. Main Outcomes and Measures: Baseline characteristics; genetic architecture; adverse outcomes, including cardiac arrest, cardiac transplantation or left ventricular assist device implantation, implantable cardioverter-defibrillator therapy, all-cause mortality, atrial fibrillation, stroke, and New York Heart Association (NYHA) functional class III or IV heart failure; and septal reduction therapies. The overall composite outcome consists of the first occurrence of any component of the ventricular arrhythmic composite end point, cardiac transplantation, left ventricular assist device implantation, NYHA class III or IV heart failure, atrial fibrillation, stroke, or all-cause mortality. Results: Of 2467 patients with hypertrophic cardiomyopathy at the time of analysis, 205 (8.3%) were black (130 male [63.4%]; mean [SD] age, 40.0 [18.6] years) and 2262 (91.7%) were white (1351 male [59.7%]; mean [SD] age, 45.5 [20.5] years). Compared with white patients, black patients were younger at the time of diagnosis (mean [SD], 36.5 [18.2] vs 41.9 [20.2] years; P < .001), had higher prevalence of NYHA class III or IV heart failure at presentation (36 of 205 [22.6%] vs 174 of 2262 [15.8%]; P = .001), had lower rates of genetic testing (111 [54.1%] vs 1404 [62.1%]; P = .03), and were less likely to have sarcomeric mutations identified by genetic testing (29 [26.1%] vs 569 [40.5%]; P = .006). Implantation of implantable cardioverter-defibrillators did not vary by race; however, invasive septal reduction was less common among black patients (30 [14.6%] vs 521 [23.0%]; P = .007). Black patients had less incident atrial fibrillation (35 [17.1%] vs 608 [26.9%]; P < .001). Black race was associated with increased development of NYHA class III or IV heart failure (hazard ratio, 1.45; 95% CI, 1.08-1.94) which persisted on multivariable Cox proportional hazards regression (hazard ratio, 1.97; 95% CI, 1.34-2.88). There were no differences in the associations of race with stroke, ventricular arrhythmias, all-cause mortality, or the overall composite outcome. Conclusions and Relevance: The findings suggest that black patients with hypertrophic cardiomyopathy are diagnosed at a younger age, are less likely to carry a sarcomere mutation, have a higher burden of functionally limited heart failure, and experience inequities in care with lower use of invasive septal reduction therapy and genetic testing compared with white patients. Further study is needed to assess whether higher rates of heart failure may be associated with underlying ancestry-based disease pathways, clinical management, or structural inequities.

19.
JAMA Cardiol ; 5(1): 65-72, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693057

RESUMO

Importance: Patients with hypertrophic cardiomyopathy (HCM) are prone to body weight increase and obesity. Whether this predisposes these individuals to long-term adverse outcomes is still unresolved. Objective: To describe the association of body mass index (BMI, calculated as weight in kilograms divided by height in meters squared) with long-term outcomes in patients with HCM in terms of overall disease progression, heart failure symptoms, and arrhythmias. Design, Setting, and Participants: In this cohort study, retrospective data were analyzed from the ongoing prospective Sarcomeric Human Cardiomyopathy Registry, an international database created by 8 high-volume HCM centers that includes more than 6000 patients who have been observed longitudinally for decades. Records from database inception up to the first quarter of 2018 were analyzed. Patients were divided into 3 groups according to BMI class (normal weight group, <25; preobesity group, 25-30; and obesity group, >30). Patients with 1 or more follow-up visits were included in the analysis. Data were analyzed from April to October 2018. Exposures: Association of baseline BMI with outcome was assessed. Main Outcome and Measures: Outcome was measured against overall and cardiovascular mortality, a heart failure outcome (ejection fraction less than 35%, New York Heart Association class III/IV symptoms, cardiac transplant, or assist device implantation), a ventricular arrhythmic outcome (sudden cardiac death, resuscitated cardiac arrest, or appropriate implantable cardioverter-defibrillator therapy), and an overall composite outcome (first occurrence of any component of the ventricular arrhythmic or heart failure composite end point, all-cause mortality, atrial fibrillation, or stroke). Results: Of the 3282 included patients, 2019 (61.5%) were male, and the mean (SD) age at diagnosis was 47 (15) years. These patients were observed for a median (interquartile range) of 6.8 (3.3-13.3) years. There were 962 patients in the normal weight group (29.3%), 1280 patients in the preobesity group (39.0%), and 1040 patients in the obesity group (31.7%). Patients with obesity were more symptomatic (New York Heart Association class of III/IV: normal weight, 87 [9.0%]; preobesity, 138 [10.8%]; obesity, 215 [20.7%]; P < .001) and more often had obstructive physiology (normal weight, 201 [20.9%]; preobesity, 327 [25.5%]; obesity, 337 [32.4%]; P < .001). At follow-up, obesity was independently associated with the HCM-related overall composite outcome (preobesity vs normal weight: hazard ratio [HR], 1.102; 95% CI, 0.920-1.322; P = .29; obesity vs normal weight: HR, 1.634; 95% CI, 1.332-1.919; P < .001) and the heart failure composite outcome (preobesity vs normal weight: HR, 1.192; 95% CI, 0.930-1.1530; P = .20; obesity vs normal weight: HR, 1.885; 95% CI, 1.485-2.393; P < .001) irrespective of age, sex, left atrium diameter, obstruction, and genetic status. Obesity increased the likelihood of atrial fibrillation but not of life-threatening ventricular arrhythmias. Conclusions and Relevance: Obesity is highly prevalent among patients with HCM and is associated with increased likelihood of obstructive physiology and adverse outcomes. Strategies aimed at preventing obesity and weight increase may play an important role in management and prevention of disease-related complications.

20.
Circ Heart Fail ; 12(12): e006231, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31813281

RESUMO

BACKGROUND: The VANISH trial (Valsartan for Attenuating Disease Evolution in Early Sarcomeric Hypertrophic Cardiomyopathy) targeted young sarcomeric gene mutation carriers with early-stage hypertrophic cardiomyopathy (HCM) to test whether valsartan can modify disease progression. We describe the baseline characteristics of the VANISH cohort and compare to previous trials evaluating angiotensin receptor blockers. METHODS: Applying a randomized, double-blinded, placebo-controlled design, 178 participants with nonobstructive HCM (age, 23.3±10.1 years; 61% men) were randomized in the primary cohort and 34 (age, 16.5±4.9 years; 50% men) in the exploratory cohort of sarcomeric mutation carriers without left ventricular hypertrophy. RESULTS: In the primary cohort, maximal left ventricular wall thickness was 17±4 mm for adults and Z score 7.0±4.5 for children. Nineteen percent had late gadolinium enhancement on cardiac magnetic resonance. Mean peak oxygen consumption was 33 mL/kg per minute, and 92% of participants were New York Heart Association functional class I. New York Heart Association class II was associated with older age, MYH7 variants, and more prominent imaging abnormalities. Six previous trials of angiotensin receptor blockers in HCM enrolled a median of 24 patients (range, 19-133) with mean age of 51.2 years; 42% of patients were in New York Heart Association class ≥II, and sarcomeric mutations were not required. CONCLUSIONS: The VANISH cohort is much larger, younger, less heterogeneous, and has less advanced disease than prior angiotensin receptor blocker trials in HCM. Participants had relatively normal functional capacity and mild HCM features. New York Heart Association functional class II symptoms were associated with older age, more prominent imaging abnormalities, and MYH7 variants, suggesting both phenotype and genotype contribute to disease manifestations. CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01912534.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Cardiomiopatia Hipertrófica/tratamento farmacológico , Mutação , Sarcômeros/genética , Valsartana/uso terapêutico , Adolescente , Adulto , Bloqueadores do Receptor Tipo 1 de Angiotensina II/efeitos adversos , Brasil , Canadá , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Criança , Dinamarca , Progressão da Doença , Método Duplo-Cego , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Recuperação de Função Fisiológica , Fatores de Tempo , Resultado do Tratamento , Estados Unidos , Valsartana/efeitos adversos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA