Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 22 Suppl 4: A1128-36, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24978075

RESUMO

Large and periodic anti-ring arrays are fabricated by using a monolayer of polymer/nanosphere hybrid technique and applied as back reflectors in substrate-type hydrogenated amorphous silicon (a-Si:H) thin-film solar cells. The structure of each anti-ring comprises a nanodome centered inside a nanohole. The excitation of Bloch wave surface plasmon polaritons is observed in the Ag-coated anti-ring arrays. The nanodomes of the anti-ring arrays turn out to enhance large-angle light scattering and increase the effective optical path in the solar cell. The resulting efficiency of an ultrathin a-Si:H (thickness: 150 nm) solar cell is enhanced by 39% compared to that with a flat back reflector and by 13% compared to that with a nanohole back reflector.

2.
Opt Express ; 21(24): 30065-73, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24514556

RESUMO

This paper demonstrates that quantum-confined Stark effect (QCSE) within the multiple quantum wells (MQWs) can be suppressed by the growths of InGaN-based light-emitting diodes (LEDs) on the nano-sized patterned c-plane sapphire substrates (PCSSs) with reducing the space. The efficiency droop is also determined by QCSE. As verified by the experimentally measured data and the ray-tracing simulation results, the suppressed efficiency droop for the InGaN-based LED having the nano-sized PCSS with a smaller space of 200 nm can be acquired due to the weaker function of the QCSE within the MQWs as a result of the smaller polarization fields coming from the lower compressive strain in the corresponding epitaxial layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA