Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunology ; 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32053234

RESUMO

Monocytic-lineage cells in the central nervous system (CNS), including microglia and brain resident macrophages, are the key players in the CNS innate immunity against viral infections, including human immunodeficiency virus (HIV). However, these cells also serve as the major targets and reservoirs for HIV in the CNS. To address the question of how HIV can establish persistent infection in the target cells in the CNS, we examined whether HIV has the ability to counteract Toll-like receptor 3 (TLR3) activation-mediated antiviral immunity in microglia and macrophages. We observed that HIV latently infected microglial cells (HC69.5) expressed reduced levels of TLR3 and TLR3 activation-mediated interferons (IFN-α/ß and IFN-λ) as compared with the uninfected control cells (C20). In addition, HIV infection of primary human macrophages suppressed the expression of TLR3 and the IFNs. HIV infection also inhibited the expression of the antiviral ISGs and the HIV-restriction miRNAs. Mechanistically, HIV infection inhibited the phosphorylation of IFN regulatory factors (IRF3 and IRF7) and signal transducer and activator of transcription proteins (STAT1 and STAT3) in both HIV latently infected microglia and acutely infected macrophages. These findings provide previously unrecognized and sound mechanisms for HIV infection and persistence in the primary target and reservoir cells in the brain.

2.
Antiviral Res ; 174: 104704, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31917237

RESUMO

AIMS: Deguelin, a natural compound derived from Mundulea sericea (Leguminosae) and some other plants exhibits an activity to inhibit autophagy, a cellular machinery required for hepatitis C virus (HCV) replication. This study aimed to illuminate the impact of deguelin on HCV replication and mechanism(s) involved. METHODS: HCV JFH-1-Huh7 infectious system was used for the investigation. Real time RT-PCR, Western blot, fluorescent microscopy assay were used to measure the expression levels of viral or cellular factors. Overexpression and silencing expression techniques were used to determine the role of key cellular factors. RESULTS: Deguelin treatment of Huh7 cells significantly inhibited HCV JFH-1 replication in a dose- and time-dependent manner. Deguelin treatment suppressed autophagy in Huh7 cells, evidenced by the decrease of LC3B-II levels, the conversion of LC3B-I to LC3B-II, and the formation of GFP-LC3 puncta as well as the increase of p62 level in deguelin-treated cells compared with control cells. HCV infection could induce autophagy which was also suppressed by deguelin treatment. Mechanism research reveals that deguelin inhibited expression of Beclin1, which is a key cellular factor for the initiation of the autophagosome formation in autophagy. Overexpression or silencing expression of Beclin1 in deguelin-treated Huh7 cells could weaken or enhance the inhibitory effect on autophagy by deguelin, respectively, and thus partially recover or further inhibit HCV replication correspondingly. CONCLUSIONS: Deguelin may serve as a novel anti-HCV compound via its inhibitory effect on autophagy, which warrants further investigation as a potential therapeutic agent for HCV infection.

3.
Front Immunol ; 10: 2601, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803178

RESUMO

Opioid withdrawal recurs at high rates in opioid use disorder and compromises the immune system. In general, there are two types of opioid withdrawal: abrupt withdrawal (AW) and precipitated withdrawal (PW). In this study, we examined the effect of morphine AW or morphine PW on HIV infection of human blood monocyte-derived macrophages. We observed that both morphine AW and PW enhanced the susceptibility of macrophages to HIV infection. In addition, both AW and PW activated HIV replication in the latently infected myeloid cells (U1 and OM10.1). Investigation of mechanisms responsible for these observations showed that both AW and PW could inhibit the expression of multiple intracellular HIV inhibitory factors, including APOBE3G/F, SAMHD1, MX2, and HIV restriction microRNAs (miR-28, miR-125b, and miR-150) in macrophages. These findings provide additional evidence to support the notion that opioid use compromises the intracellular anti-HIV immunity and facilitates HIV infection and persistence in macrophages.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31828734

RESUMO

Exosomes play an important role in cell-to-cell communication as they can transfer functional molecules such as microRNAs (miRNAs) from one cell to another, exerting biological and immunological functions. Here, we investigated the impact of HIV infection and/or heroin use on the expression of the miRNAs in plasma exosomes. We found that HIV infection or heroin use upregulated the majority (98%) of a panel of plasma exosomal miRNAs associated with immune regulation and inflammation. We also observed the enhanced effect of HIV infection and heroin use on some of these upregulated miRNAs. Our further investigation showed that the levels of four of neuro-inflammation-related miRNAs (146a, 126, 21, and let-7a) were higher in HIV-infected heroin users as compared with the control subjects. These findings indicate that the dysregulations of the plasma exosomal miRNAs support further studies to determine the role of the miRNAs in HIV and/or heroin use-mediated immune modulation and neuro-inflammation. Graphical abstract.

5.
Cancer Med ; 8(15): 6741-6755, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31538749

RESUMO

Isolation of viable circulating tumor cells (CTC) holds the promise for improving screening, early diagnosis, and personalized treatment of lymphoma. In this study, we isolated and characterized spontaneously immortalized B-lymphocyte (SIBC) lines from HIV-infected patients with and without Non-Hodgkin's Lymphoma (AIDS-NHL). A total of 22 SIBC lines was isolated from peripheral blood mononuclear cells (PBMC) of HIV-infected patients with (n = 40) and without (n = 77) clinically detectable NHL, but not from healthy individuals (n = 34). Of these, 8 SIBC lines named HIV-SIBC were generated from HIV-infected patients without AIDS-NHL (10%, 8/77), while 14 SIBCs named AIDS-NHL-SIBC were from 13 of the AIDS-NHL patients (32.5%, 13/40). Among the 14 AIDS-NHL-SIBCs, 12 were derived from AIDS-NHL patients with poor prognoses (survival time less than 1 year). SIBCs displayed markers typical of memory B cells (CD3- CD20+ CD27+ ) with EBV infection. Moreover, AIDS-NHL-SIBCs were representative of CTC as evidenced by monoclonal Ig gene rearrangement, abnormal chromosomal karyotype, and the formation of xenograft tumors, while HIV-SIBCs generated harbored some features of tumor cells, none had the capacity of xenograft tumor formation, suggesting HIV-SIBC present the precursor of CTC. These results indicate that SIBCs is associated with poor prognosis in AIDS-NHL patients and can be isolated from HIV-infected patients with NHL and without NHL. This findings point to the need for further molecular characterization and functional studies of SIBCs, which may prove the value of SIBCs in the diagnosis, prognoses, and screening for NHL among HIV-infected patients.

6.
Cytokine ; 123: 154776, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31344598

RESUMO

Interleukin (IL)-22, a member of the IL-10 family, plays a role in antiviral immune responses to a number of viral infections. However, it is unclear whether IL-22 is involved in the mucosal immunity against herpes simplex virus 2 (HSV-2) infection in the female reproductive tract (FRT). In this study, we studied whether IL-22 could inhibit HSV-2 infection of human cervical epithelial cells (End1/E6E7 cells). We showed that End1/E6E7 cells express the functional IL-22 receptor complex (IL-22R1 and IL-10R2). When treated with IL-22, End1/E6E7 cells expressed the higher levels of IFN-stimulated genes (ISGs: ISG15, ISG56, OAS-1, OAS-2, and Mx2) than untreated cells. In addition, IL-22-treated cells produced higher levels of the tight junction proteins (ZO-1 and Occludin) than untreated cells. Mechanistically, IL-22 could activate the JAK/STAT signaling pathway by inducing the phosphorylation of STAT1 and STAT3. These observations indicate the potential of IL-22 as an anti-HSV-2 agent in the FRT mucosal innate immunity against HSV-2 infection.

7.
AIDS Rev ; 21(1): 11-22, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899112

RESUMO

The face of the HIV-1/AIDS pandemic has changed significantly thanks to the development of antiretroviral therapy (ART) regimens. Unfortunately, several HIV-associated comorbidities continuously occur in the clinical population, most notably HIV-associated neurocognitive disorders (HAND). While many molecular and cellular mechanisms have been characterized by describing HAND pathology (specifically neuroinflammatory insults and oxidative stress) in the ART era, compromised adult neurogenesis is emerging as a potential new mechanism. Neurogenesis is a dynamic process that generates new neurons and glial cells from neural stem cells (NSCs) and neural progenitor cells (NPCs) in specific areas of the brain. There are increasing observations that HIV-1 can productively and non-productively infect NSCs and NPCs. HIV-1 proteins and/or secondary immune/inflammatory responses impair the initial differentiation process of NSCs to NPCs, restrict neuronal lineage differentiation, and aberrantly promote astrocytic lineage differentiation. Recent studies with HIV-1 transgenic animal models demonstrate varying degrees of adult neurogenic deficits, which correlate with milder to moderate forms of neurocognitive impairments. The neurogenic dysfunction underlying HAND highlights the importance of developing potential therapeutics to restore adult neurogenic homeostasis in HIV-1 patients.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , HIV-1 , Transtornos Neurocognitivos/etiologia , Neurogênese , Biomarcadores , Humanos
8.
J Innate Immun ; 11(1): 29-40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30032138

RESUMO

The female reproductive tract is a major site of HIV sexual transmission. We here examined whether human cervical epithelial cells (HCEs) can be immunologically activated and produce antiviral factors against HIV. We demonstrated that HCEs (End1/E6E7 cells) possess the functional toll-like receptor (TLR)3 signaling system, which could be activated by Poly I:C and induce multiple cellular HIV restriction factors. The treatment of primary human macrophages with supernatant (SN) from TLR3-activated End1/E6E7 cell cultures resulted in HIV inhibition. This SN-mediated HIV inhibition was mainly through the induction of interferons (IFN)-ß and IFN-λs, as the antibodies to IFN-ß or IFN-λs receptor could effectively block the SN-mediated anti-HIV effect. Further studies showed that the incubation of macrophages with SN from the activated cervical epithelial cell cultures induced the expression of a number of IFN-stimulated genes (ISGs), including IFN-stimulated gene (ISG15), ISG56, 2', 5'-oligoadenylate synthetase 1 (OAS 1), OAS 2, Myxovirus Resistance A (MxA), MxB, and Guanylate-binding protein 5 (GBP5). In addition, TLR3-activated cells produced the CC chemokines [regulated on activation, normal T cell expressed and secreted (RANTES), Human macrophage inflammatory protein 1 alpha (MIP-1α), MIP-1ß] the ligands of HIV entry co-receptor CCR5. These observations support further studies on HCEs as potentially crucial and alternative targets for immunological intervention to control and prevent HIV sexual transmission.

9.
Emerg Microbes Infect ; 7(1): 207, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30538219

RESUMO

Tuberculosis (TB) has become the most deadly infectious diseases due to epidemics of HIV/AIDS and multidrug-resistant/extensively drug-resistant TB (MDR-/XDR-TB). Although person-to-person transmission contributes to MDR-TB, it remains unknown whether infection with MDR strains resembles infection with drug-sensitive (DS) TB strains, manipulating limited or broad immune responses. To address these questions, macaques were infected with MDR strain V791 and a drug-sensitive Erdman strain of TB. MDR bacilli burdens in the airway were significantly higher than those of the Erdman control after pulmonary exposure. This productive MDR strain infection upregulated the expression of caspase 3 in macrophages/monocytes and induced appreciable innate-like effector responses of CD3-negative lymphocytes and Ag-specific γδ T-cell subsets. Concurrently, MDR strain infection induced broad immune responses of T-cell subpopulations producing Th1, Th17, Th22, and CTL cytokines. Furthermore, MDR bacilli, like the Erdman strain, were capable of inducing typical TB disease characterized by weight loss, lymphocytopenia, and severe TB lesions. For the first time, our results suggest that MDR-TB infection acts like DS to induce high bacterial burdens in the airway (transmission advantage), innate/adaptive immune responses, and disease processes. Because nonhuman primates are biologically closer to humans than other species, our data may provide useful information for predicting the effects of primary MDR strain infection after person-to-person transmission. The findings also support the hypothesis that a vaccine or host-directed adjunctive modality that is effective for drug-sensitive TB is likely to also impact MDR-TB.


Assuntos
Imunidade Adaptativa , Carga Bacteriana/imunologia , Imunidade Inata , Pulmão/imunologia , Tuberculose Resistente a Múltiplos Medicamentos/imunologia , Animais , Caspase 3 , Citocinas/imunologia , Farmacorresistência Bacteriana Múltipla , Pulmão/microbiologia , Macaca , Macrófagos/imunologia , Macrófagos/microbiologia , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Tuberculose Pulmonar/imunologia
10.
Viruses ; 10(10)2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322047

RESUMO

The Bowman‒Birk inhibitor (BBI), a protease inhibitor derived from soybeans, has been extensively studied in anti-tumor and anti-inflammation research. We recently reported that BBI has an anti-HIV-1 property in primary human macrophages. Because HSV-2 infection plays a role in facilitating HIV-1 sexual transmission, we thus examined whether BBI has the ability to inhibit HSV-2 infection. We demonstrated that BBI could potently inhibit HSV-2 replication in human cervical epithelial cells (End1/E6E7). This BBI-mediated HSV-2 inhibition was partially through blocking HSV-2-mediated activation of NF-κB and p38 MAPK pathways. In addition, BBI could activate the JAK/STAT pathway and enhance the expression of several antiviral interferon-stimulated genes (ISGs). Furthermore, BBI treatment of End1/E6E7 cells upregulated the expression of tight junction proteins and reduced HSV-2-mediated cellular ubiquitinated proteins' degradation through suppressing the ubiquitin‒proteasome system. These observations indicate that BBI may have therapeutic potential for the prevention and treatment of HSV-2 infections.


Assuntos
Antivirais/farmacologia , Colo do Útero/citologia , Células Epiteliais/virologia , Herpes Simples/virologia , Herpesvirus Humano 2/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Linhagem Celular , Colo do Útero/metabolismo , Colo do Útero/virologia , Células Epiteliais/metabolismo , Feminino , Herpes Simples/genética , Herpes Simples/metabolismo , Herpesvirus Humano 2/fisiologia , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Replicação Viral/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Scand J Immunol ; 88(5): e12717, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30247785

RESUMO

The recently discovered IFN-λ4 has been found to have antiviral activity against several viruses. However, it's unknown whether IFN-λ4 can inhibit HIV infection. Here, we show that IFN-λ4 could suppress HIV infection of macrophages. This IFN-λ4-mediated HIV inhibition was compromised by the antibodies against IFN-λ receptor complex, IFN-λR1/IL-10R2. IFN-λ4 enhanced the phosphorylation of STAT1, and induced antiviral interferon-stimulated genes. These findings indicated that IFN-λ4 can inhibit HIV via JAK/STAT signalling pathway.


Assuntos
Fármacos Anti-HIV/farmacologia , Infecções por HIV/imunologia , Subunidade beta de Receptor de Interleucina-10/metabolismo , Interleucinas/metabolismo , Interleucinas/farmacologia , Macrófagos/imunologia , Macrófagos/virologia , Receptores de Citocinas/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Técnicas In Vitro , Macrófagos/metabolismo , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Replicação Viral/imunologia
12.
Cell Death Dis ; 9(9): 898, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185779

RESUMO

Both alcohol and hepatitis C virus (HCV) infection could induce cellular autophagy in liver cells, which is considered to be essential for productive HCV replication. However, whether alcohol-induced autophagy is involved in the pathogenesis of HCV infection is still poorly understood. Alcohol treatment could induce autophagy in Huh7 cells (a hepatoma cell line that supports HCV JFH-1 replication), evidenced by the increase of LC3B-II levels, the conversion of LC3B-I to LC3B-II, and the formation of GFP-LC3 puncta as well as the decrease of p62 level in alcohol-treated cells compared with control cells. Alcohol treatment also significantly increased PIASy (a member of the PIAS family) expression, which can act as a SUMO (small ubiquitin-like modifier protein) E3 ligase to regulate a broader range of cellular processes including autophagy. Overexpression or the silencing expression of PIASy in alcohol-treated Huh7 cells could increase or decrease autophagic activation caused by alcohol treatment, respectively, and thus affect HCV replication correspondingly. In the absence of alcohol, overexpression or silencing expression of PIASy increase or decrease the level of cellular autophagy, judged by the changes of LC3B-II and p62 levels in the presence or absence of chloroquine (CQ), a lysosome inhibitor. More importantly, in the presence of 3-methyladenine (3-MA), an inhibitor in the early stage of autophagy, the effects of overexpression or silencing expression of PIASy on HCV replication were largely blocked. Furthermore, PIASy could selectively drive the accumulation of SUMO1-conjugated proteins, along with upregulation of the expression of several important autophagy factors, including ATG7 and ATG5-ATG12. In conclusion, alcohol promotes HCV replication through activation of autophagy in Huh7 cells, which partly attributes to its induction of PIASy expression. PIASy-enhanced accumulation of SUMO1-conjugated proteins may contribute to its inducing effect of autophagy. Our findings provide a novel mechanism for the action of alcohol-promoting HCV replication in the context of cellular autophagy.


Assuntos
Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Etanol/farmacologia , Hepacivirus/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Inibidoras de STAT Ativados/genética , Regulação para Cima/efeitos dos fármacos , Replicação Viral/genética , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Hepatite C/genética , Hepatite C/virologia , Hepatócitos/virologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Proteínas Associadas aos Microtúbulos/genética , Ativação Transcricional/genética
13.
Front Immunol ; 9: 247, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515574

RESUMO

As a rich source of CD4+ T cells and macrophages, the gastrointestinal (GI) tract is a major target site for HIV infection. The interplay between GI-resident macrophages and intestinal epithelial cells (IECs) constitutes an important element of GI innate immunity against pathogens. In this study, we investigated whether human IECs have the ability to produce antiviral factors that can inhibit HIV infection of macrophages. We demonstrated that IECs possess functional toll-like receptor 3 (TLR3), the activation of which resulted in induction of key interferon (IFN) regulatory factors (IRF3 and IRF7), IFN-ß, IFN-λ, and CC chemokines (MIP-1α, MIP-1ß, RANTES), the ligands of HIV entry co-receptor CCR5. In addition, TLR3-activated IECs release exosomes that contained the anti-HIV factors, including IFN-stimulated genes (ISGs: ISG15, ISG56, MxB, OAS-1, GBP5, and Viperin) and HIV restriction miRNAs (miRNA-17, miRNA-20, miRNA-28, miRNA-29 family members, and miRNA-125b). Importantly, treatment of macrophages with supernatant (SN) from the activated IEC cultures inhibited HIV replication. Further studies showed that IEC SN could also induce the expression of antiviral ISGs and cellular HIV restriction factors (Tetherin and APOBEC3G/3F) in HIV-infected macrophages. These findings indicated that IECs might act as an important element in GI innate immunity against HIV infection/replication.


Assuntos
Células Epiteliais/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Idoso , Linhagem Celular , Quimiocinas CC/imunologia , Quimiocinas CC/metabolismo , Células Epiteliais/metabolismo , Exossomos/imunologia , Exossomos/metabolismo , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Imunidade Inata , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Interferons/imunologia , Interferons/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Macrófagos/virologia , Masculino , Receptor 3 Toll-Like/imunologia , Receptor 3 Toll-Like/metabolismo
14.
J Med Virol ; 90(6): 1112-1120, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446489

RESUMO

Alcohol could compromise the anti-hepatitis C virus (HCV) function of interferon-alpha (IFN-α). However, little information is available about the effect of alcohol on interferon-lambda (IFN-λ, type III IFN), a novel candidate for development of therapy for HCV infection. Huh7 cells were infected with HCV JFH-1 virus, then treated with alcohol, and/or IFN-λ1. RT-PCR and Western blot were used to detect the levels of HCV and key cellular factors. Overexpression or silencing expression was performed to verify the role of key factors in alcohol-attenuated anti-HCV function of IFN-λ1. Alcohol treatment compromised anti-HCV effect of IFN-λ1 in HCV JFH-1-infected Huh7 cells, evidenced by the significantly increased levels of HCV RNA, and HCV core protein in alcohol-/IFN-λ1-treated cells compared to cells with IFN-λ1 treatment alone. Investigation of the mechanisms responsible for the alcohol action revealed that alcohol enhanced the expression of protein inhibitor of activated STAT (PIASy). Overexpression of PIASy compromised anti-HCV ability of IFN-λ1, whereas silencing expression of PIASy partly restored the alcohol-attenuated anti-HCV effect of IFN-λ1. More importantly, overexpression of PIASy significantly down-regulated the level of IFN-λ1-indcued phosphorylation of STAT1 (p-STAT1), an important adaptor in IFN-λ pathway, as well as reduced the expression of IFN-λ1-induced IFN-stimulated genes 56 (ISG56), and myxovirus resistance 1 (Mx1), two antiviral effectors in in IFN-λ pathway. These findings indicate that alcohol, through inducing the expression of negative regulator in IFN-λ pathway, inhibits IFN-λ-mediated anti-HCV action in human hepatic cells, which may lead to the poor efficacy of IFN-λ-based therapy against HCV infection.


Assuntos
Álcoois/metabolismo , Hepacivirus/imunologia , Hepatócitos/imunologia , Interleucinas/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/biossíntese , Proteínas Inibidoras de STAT Ativados/biossíntese , Regulação para Cima , Western Blotting , Linhagem Celular , Perfilação da Expressão Gênica , Hepacivirus/crescimento & desenvolvimento , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Interferons , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real , Proteínas do Core Viral/análise
15.
Virology ; 513: 91-97, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040829

RESUMO

Bowman-Birk inhibitor (BBI) is a soybean-derived protease inhibitor that has anti-inflammation and anti-HIV effect. Here, we further investigated the anti-HIV action of BBI in macrophages, focusing on its effect on viral entry. We found that BBI could significantly block HIV entry into macrophages. Investigation of the mechanism(s) of the BBI action on HIV inhibition showed that BBI down-regulated the expression of CD4 receptor (as much as 80%) and induced the production of the CC chemokines (up to 60 folds at protein level) in macrophages. This inhibitory effect of BBI on HIV entry could be blocked by the neutralization antibodies to CC chemokines. These findings indicate that BBI may have therapeutic potential as a viral entry inhibitor for the prevention and treatment of HIV infection.


Assuntos
Inibidores da Fusão de HIV/metabolismo , HIV/efeitos dos fármacos , HIV/fisiologia , Macrófagos/virologia , Inibidor da Tripsina de Soja de Bowman-Birk/metabolismo , Internalização do Vírus/efeitos dos fármacos , Antígenos CD4/biossíntese , Células Cultivadas , Quimiocinas/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos
16.
Eur J Med Chem ; 143: 107-113, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29172078

RESUMO

A novel ß-D-2'-deoxy-2'-α-fluoro-2'-ß-C-(fluoromethyl)uridine phosphoramidate prodrug (1) has been synthesized. This compound exhibits submicromolar-level antiviral activity in vitro against HCV genotypes 1b, 1a, 2a, and S282T replicons (EC50 = 0.18-1.13 µM) with low cytotoxicity (CC50 > 1000 µM). Administered orally, prodrug 1 is well tolerated at doses of up to 4 g/kg in mice, and produces a high level of the corresponding triphosphate in rat liver.


Assuntos
Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Compostos Organofosforados/farmacologia , Pró-Fármacos/farmacologia , Uridina/análogos & derivados , Administração Oral , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hepacivirus/genética , Humanos , Fígado/efeitos dos fármacos , Fígado/virologia , Camundongos , Camundongos Endogâmicos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/síntese química , Pró-Fármacos/química , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Uridina/administração & dosagem , Uridina/química , Uridina/farmacologia , Replicação Viral/efeitos dos fármacos
17.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263266

RESUMO

Although it has been shown that some mannose-binding lectins (MBLs) exhibit significant activity against HIV infection, little is known about whether N-acetylgalactosamine (GalNAc)-binding lectins have the ability to inhibit HIV infection. Here, we demonstrate that a soybean-derived lectin (SBL) with GalNAc-binding affinity could potently suppress HIV infection of macrophages in a dose-dependent fashion. Unlike the MBLs, which block HIV only through binding to the glycosylated envelope proteins (gp120 and gp41) of the virus, SBL inhibited HIV at multiple steps of the virus infection/replication cycle. SBL could activate the beta interferon (IFN-ß)-STAT signaling pathway, resulting in the upregulation of a number of antiviral interferon-stimulated genes (ISGs) in macrophages. In addition, SBL treatment of macrophages induced the production of C-C chemokines, which bind to HIV entry coreceptor CCR5. Deglycosylation of cell surface galactosyl moieties or presaturation of GalNAc-binding capacity could compromise SBL-mediated induction of the antiviral factors. Furthermore, SBL exerted its anti-HIV activity in the low nanomolar range with no mitogenic effect on CD4+ T cells, a major advantage in the development of SBL as a potential anti-HIV agent compared with MBLs. These data indicate a necessity to further investigate SBL as an alternative and cost-effective anti-HIV natural product.IMPORTANCE Mannose-binding lectins (MBLs) can block the attachment of HIV to target cells and have been suggested as anti-HIV microbicides. However, the mitogenic effect of MBLs on CD4+ T cells limits this potential in clinical settings. Lectins with galactose (Gal)- or N-acetylgalactosamine (GalNAc)-binding specificity are another important category of carbohydrate-binding proteins (CBP). Compared to high-mannose N-linked glycans, GalNAc-type glycans present much less in HIV gp120 or gp41 glycosylation. Here, we demonstrate that GalNAc-specific soybean lectin (SBL) triggers antiviral signaling via recognition of the cell surface galactosyl group of macrophages, which results in the suppression of HIV at multiple steps. More importantly, SBL has no mitogenic effect on the activation of CD4+ T cells, a major advantage in the development of Gal/GalNAc-specific lectins as naturopathic anti-HIV agents.


Assuntos
Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/imunologia , Macrófagos/imunologia , Lectinas de Plantas/farmacologia , Proteínas de Soja/farmacologia , Internalização do Vírus/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/patologia , HIV-1/patogenicidade , Humanos , Interferon beta/imunologia , Macrófagos/patologia , Macrófagos/virologia , Receptores CCR5/imunologia , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
18.
Front Immunol ; 9: 2921, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619284

RESUMO

There is limited information about the role of hepatic stellate cells (HSCs) in the liver innate immunity against hepatitis B virus (HBV) infection. We thus examined whether hepatic stellate cell line (LX-2) can be immunologically activated and produce antiviral factors that inhibit HBV replication in HepG2 cells. We found that LX-2 cells expressed the functional Toll-like receptor 3 (TLR3), activation of which by PolyI:C resulted in the selective induction of interferon-ß (IFN-ß) and IFN-λs, the phosphorylation of IFN regulatory factor 3 (IRF3) and IRF7. When HepG2 cells were treated with supernatant (SN) from PolyI:C-activated LX-2 cells, HBV replication was significantly inhibited. IFN-ß and IFN-λ appeared to contribute to LX-2 SN-mediated HBV inhibition, as the antibodies to IFN-ß and IFN-λ receptors could largely block the LX-2 SN action. Mechanistically, LX-2 SN treatment of the HepG2 cells induced a number of antiviral IFN-stimulated genes (ISGs: ISG20, ISG54, ISG56, OAS-1, Trim22, and Trim25) and facilitated the phosphorylation of STATs. These observations support further studies on the role of HSCs in the liver innate immunity against HBV infection.


Assuntos
Células Estreladas do Fígado/imunologia , Vírus da Hepatite B/imunologia , Receptor 3 Toll-Like/metabolismo , Replicação Viral/imunologia , Meios de Cultura/farmacologia , Células Hep G2 , Células Estreladas do Fígado/metabolismo , Hepatite B/imunologia , Hepatite B/virologia , Humanos , Imunidade Inata , Interferons/imunologia , Interferons/metabolismo , Fígado/citologia , Fígado/imunologia , Fígado/virologia , Fosforilação/imunologia , Poli I-C/genética , Receptores de Interferon/imunologia , Receptores de Interferon/metabolismo , Fatores de Transcrição STAT/imunologia , Fatores de Transcrição STAT/metabolismo , Receptor 3 Toll-Like/genética , Replicação Viral/efeitos dos fármacos
19.
Retrovirology ; 14(1): 51, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141633

RESUMO

BACKGROUND: The CRISPR/Cas9 system has been widely used for genome editing in mammalian cells. CXCR4 is a co-receptor for human immunodeficiency virus type 1 (HIV-1) entry, and loss of CXCR4 function can protect cells from CXCR4 (X4)-tropic HIV-1 infection, making CXCR4 an important target for HIV-1 gene therapy. However, the large size of the CRISPR/SpCas9 system presents an obstacle to its efficient delivery into primary CD4+ T cells. Recently, a small Staphylococcus aureus Cas9 (SaCas9) has been developed as a genome editing tool can address this question. Therefore, it provides a promising strategy for HIV-1 gene therapy if it is used to target CXCR4. RESULTS: Here, we employed a short version of Cas9 from Staphylococcus aureus (SaCas9) for targeting CXCR4. We demonstrated that transduction of lenti-virus expressing SaCas9 and selected single-guided RNAs of CXCR4 in human CD4+ T cell lines efficiently induced the editing of the CXCR4 gene, making these cell lines resistant to X4-tropic HIV-1 infection. Moreover, we efficiently transduced primary human CD4+ T cells using adeno-associated virus-delivered CRISPR/SaCas9 and disrupted CXCR4 expression. We also showed that CXCR4-edited primary CD4+ T cells proliferated normally and were resistant to HIV-1 infection. CONCLUSIONS: Our study provides a basis for possible application of CXCR4-targeted genome editing by CRISPR/SaCas9 in HIV-1 gene therapy.


Assuntos
Linfócitos T CD4-Positivos/virologia , Sistemas CRISPR-Cas/genética , Resistência à Doença/genética , Edição de Genes/métodos , Infecções por HIV/genética , Receptores CXCR4/genética , Staphylococcus aureus/enzimologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Endonucleases/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1 , Interações Hospedeiro-Patógeno/genética , Humanos , Células Jurkat , Receptores CXCR4/metabolismo
20.
World J Gastroenterol ; 23(32): 5895-5903, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28932081

RESUMO

AIM: To investigate the effect of (-)-epigallocatechin-3-gallate (EGCG) on polyinosinic-polycytidylic acid (poly I:C)-triggered intracellular innate immunity against hepatitis C virus (HCV) in hepatocytes. METHODS: A cell culture model of HCV infection was generated by infecting a hepatoma cell line, Huh7, with HCV JFH-1 strain (JFH-1-Huh7). Poly I:C with a high molecular weight and EGCG were used to stimulate the JFH-1-Huh7 cells. Real-time reverse transcription-polymerase chain reaction was used to detect the expression levels of intracellular mRNAs and of intracellular and extracellular HCV RNA. Enzyme-linked immunosorbent assay was used to evaluate the interferon (IFN)-λ1 protein level in the cell culture supernatant. Immunostaining was used to examine HCV core protein expression in Huh7 cells. RESULTS: Our recent study showed that HCV replication could impair poly I:C-triggered intracellular innate immune responses in hepatocytes. In the current study, we showed that EGCG treatment significantly increased the poly I:C-induced expression of Toll-like receptor 3 (TLR3), retinoic acid-inducible gene I, and IFN-λ1 in JFH-1-Huh7 cells. In addition, supplementation with EGCG increased the poly I:C-mediated antiviral activity in JFH-1-Huh7 cells at the intracellular and extracellular HCV RNA and protein levels. Further investigation of the mechanisms showed that EGCG treatment significantly enhanced the poly I:C-induced expression of IFN-regulatory factor 9 and several antiviral IFN-stimulated genes, including ISG15, ISG56, myxovirus resistance A, and 2'-5'-oligoadenylate synthetase 1, which encode the key antiviral elements in the IFN signaling pathway. CONCLUSION: Our observations provide experimental evidence that EGCG has the ability to enhance poly I:C-induced intracellular antiviral innate immunity against HCV replication in hepatocytes.


Assuntos
Antivirais/farmacologia , Catequina/análogos & derivados , Hepacivirus/fisiologia , Hepatite C/imunologia , Imunidade Inata/efeitos dos fármacos , Interferon gama/imunologia , Poli I-C/imunologia , Antivirais/uso terapêutico , Catequina/farmacologia , Catequina/uso terapêutico , Linhagem Celular Tumoral , Proteína DEAD-box 58/imunologia , Proteína DEAD-box 58/metabolismo , Ensaio de Imunoadsorção Enzimática , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Hepatócitos , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/imunologia , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferon gama/metabolismo , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/metabolismo , Proteínas do Core Viral/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA