Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 152(16): 164303, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32357787

RESUMO

The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight.

2.
Phys Chem Chem Phys ; 22(3): 1222-1241, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31850421

RESUMO

Through the use of tunable vacuum ultraviolet light generated by the DESIRS VUV synchrotron beamline, a jet-stirred reactor was coupled for the first time to an advanced photoionization mass spectrometer based upon a double imaging PhotoElectron PhotoIon COincidence (i2PEPICO) scheme. This new coupling was used to investigate the low-temperature oxidation of n-pentane, a prototype molecule for gasoline or diesel fuels. Experiments were performed under quasi-atmospheric pressure (1.1 bar) with a residence time of 3 s for two equivalence ratios (1/3 and 0.5) with a fuel initial mole fraction of 0.01. The measured time-of-flight mass spectra are in good agreement with those previously obtained with other photoionization mass spectrometers and, like those previous ones, display several m/z peaks for which the related species assignation is ambiguous. This paper shows how the analysis of the coincident mass-tagged Threshold PhotoElectron Spectra (TPES) together with first principle computations, consisting of the determination of the adiabatic ionization energies and the spectra of some products, may assist products' identification. The results mostly confirm those previously obtained by photoionization mass spectrometry and gas chromatography, but also allow a more accurate estimation of the 1-pentene/2-pentene mole fraction ratio. Our data also indicate a higher formation of acetone and methyl ethyl ketone than what is predicted by current models, as well as the presence of products that were not previously taken into account, such as methoxyacetylene, methyl vinyl ketone or furanone. The formation of three, four and five membered ring cyclic ethers is confirmed along with linear ketones: 2- and 3-pentanone. A significant general trend in indicating higher amounts of ketones than are indicated by gas chromatography is noted. Finally, TPES of alkenylhydroperoxides are also provided for the first time and constrains on the isomers identification are provided.

4.
Ultrason Sonochem ; 58: 104596, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31450358

RESUMO

Herein, we report a super-active electrocatalyst of copper(II) oxide nanoparticles (CuO NPs) decorated functionalized multiwalled carbon nanotubes (CuO NPs@f-MWCNTs) by the ultrasonic method. The as-synthesized CuO NPs@f-MWCNTs was characterized through the FESEM, XPS, XRD and electrochemical impedance spectroscopy (EIS). The combination of highly active CuO NPs and highly conductive f-MWCNTs film with rapid detection enables this nanohybrid to display excellent electrochemical performance towards anesthesia drug. Furthermore, the hybrid electrocatalyst modified SPCE was developed for the determination of flunitrazepam (FTM) for the first time. FTM is important anesthesia drug with high adverse effect in human body. Benefiting from the synergistic reaction of CuO NPs and f-MWCNTs, this nanohybrid exhibited high sensitivity and specificity towards FTM electro-reduction. The CuO NPs@f-MWCNTs film modified SPCE exhibits outstanding electrochemical activity including excellent reproducibility, wide linear range from 0.05 to 346.6 µM with nanomolar limit of detection for FTM detection. Further, the as-modified CuO NPs@f-MWCNTs/SPCE has been applied to determination of FTM in biological and drug samples with satisfactory recovery results, thereby showing a notable potential for extensive (bio) sensor applications.


Assuntos
Antibacterianos/análise , Cobre/química , Eletroquímica/instrumentação , Flunitrazepam/análise , Limite de Detecção , Nanosferas/química , Nanotubos de Carbono/química , Antibacterianos/sangue , Antibacterianos/química , Antibacterianos/urina , Técnicas de Química Sintética , Eletrodos , Flunitrazepam/sangue , Flunitrazepam/química , Flunitrazepam/urina , Humanos , Nanotecnologia , Fatores de Tempo
5.
Phys Chem Chem Phys ; 21(28): 15871-15878, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31282914

RESUMO

The four-dimensional-potential energy surface (4D-PES) of the CO2-CO van der Waals complex is generated using the explicitly correlated coupled cluster with single, double, and perturbative triple excitation (CCSD(T)-F12) method in conjunction with the augmented correlation-consistent triple zeta (aug-cc-pVTZ) basis set. This 4D-PES is developed over the set of inter-molecular coordinates and where the CO2 and CO monomers are treated as rigid rotors. Afterwards, analytic fits of this 4D-PES are carried out. In addition to the already known C-bound and O-bound stable structures of CO2-CO, we characterise a new isomer: it has a T-shaped structure where the O atom of the CO2 moiety points into the centre of mass of CO. We also find the saddle points connecting these minimal structures. This new isomer may play a role during the intramolecular isomerization processes at low energies. Then, the 4D-PES expansion is incorporated into bound vibrational state computations of C-bound and O-bound complexes. We also computed the temperature dependence of the second virial coefficient for CO2-CO. A good agreement with experiments is found.

6.
Ultrason Sonochem ; 57: 116-124, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31208606

RESUMO

Herein, a novel Zinc Ferrite nanocubes (ZnFe2O4 NCs) decorated reduced graphene oxide (rGO) nanocomposite have been designed through a sonochemical method. After then, as-synthesized ZnFe2O4 NCs/rGO was characterized by XPS, XRD, HRTEM and EIS. Furthermore, the ZnFe2O4 NCs/rGO nanocomposite modified GCE (glassy carbon electrode) shows excellent electrochemical sensing performance towards biomarker of 4-nitroquinoline N-oxide (4-NQ) with fast detection. 4-NQ is one of the important cancer biomarker. Moreover, the fabricated sensor showed a wide linear window for 4-NQ between 0.025 and 534.12 µM and nanomolar detection limit (8.27 nM). Further, the as-prepared ZnFe2O4 NCs/rGO/GCE has been applied to the determination of 4-NQ in human blood and urine samples with excellent recovery results.

7.
Phys Chem Chem Phys ; 21(26): 14453-14464, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31210192

RESUMO

Single photon ionization and subsequent unimolecular ion decomposition were studied on jet-cooled benzophenone and fluorenone separately, using VUV synchrotron radiation in a photoion/photoelectron coincidence setup. Slow PhotoElectron Spectra (SPES) were recorded in coincidence with either the parent or the fragment ions for hν < 12.5 eV. Dissociative ionization is observed for benzophenone only. The full interpretation of the measurements, including the identification of the neutral and ionic species when dissociative ionization is at play, benefits from high level ab initio computations for determining the equilibrium structures and the energetics of the neutral and ionized molecules and of their fragments. Electronically excited states of the parent molecular ions were calculated also. From this analysis, an accurate experimental determination of the energetics of the benzophenone and fluorenone ions and of their fragmentation channels is available: adiabatic ionization energies of benzophenone at 8.923 ± 0.005 eV and of fluorenone at 8.356 ± 0.007 eV; and appearance energies of benzophenone fragment ions at 11.04 ± 0.02 eV (loss of C6H5), 11.28 ± 0.02 eV (loss of H) and 11.45 ± 0.02 eV (loss of CO). The corresponding fragmentation mechanisms are explored, showing likely concerted bonds rearrangement. Possible pre-ionizing fragmentation is discussed in light of the spectra presented. The structural rigidity of fluorenone diarylketone seems to be the origin of the inhibition of the fragmentation of its cation.

8.
J Phys Chem A ; 123(26): 5555-5565, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31244122

RESUMO

Using a first-principle methodology, we investigate the stable structures of the nonreactive and reactive clusters formed between Zn2+-triazoles ([Zn2+-Tz]) clusters and CO2 and/or H2O. In sum, we characterized two modes of bonding of [Zn2+-Tz] with CO2/H2O: the interaction is established through (i) a covalent bond between Zn2+ of [Zn2+-Tz] and oxygen atoms of CO2 or H2O and (ii) hydrogen bonds through N-H or C-H of [Zn2+-Tz] and oxygen atoms of H2O or CO2, N-H···O. We also identified intramolecular proton transfer processes induced by complexation. Indeed, water drastically changes the shape of the energy profiles of the tautomeric phenomena through strong lowering of the potential barriers to tautomerism. The comparison to [Zn2+-Im] subunits formed with Zn2+ and imidazole shows that the efficiency of Tz-based compounds for CO2 capture and uptake is due to the incorporation of more accessible nitrogen donor sites in Tzs compared to imidazoles. Since [Zn2+-Tz] clusters are subunits of an organometallic nanoporous materials and Zn-proteins, our data are useful for deriving force fields for macromolecular simulations of these materials. Our work also suggests the consideration of traces of water to better model the CO2 sequestration and reactivity on macromolecular entities such as pores or active sites.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 217: 278-287, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30952094

RESUMO

By using first-principles approaches based on Density Functional Theory, we explore the possibility of using dendritic macromolecular structures as carriers of the doxorubicin anticancer drug. In particular, we consider macromolecular cavities of different sizes composed of phenylene-, thiophene-, phenyl-cored thiophen- and thioazole-based dendrimers. The comparison between the optimized molecular geometries of the monomers and of the host-guest complexes reveals that only slight structural changes are observed in doxorubicin upon complexation. Also, the encapsulation energies for the host-guest complexes suggest that these systems are of potential use for pharmacology applications in vivo. The interaction of the guest doxorubicin with the macromolecular cavities exploits different types of weak intermolecular forces including σ, π and hydrogen bond interactions. The electronic structure of these complexes is discussed, with particular emphasis placed on the role of the charge distribution and the nature of the frontier molecular orbitals in the encapsulation process. Spectroscopic properties of these complexes are derived to facilitate their detection in laboratory and in vivo. These include IR vibrational frequencies, absorption wavelengths and relative oscillator strengths for the main transitions in the UV-Vis spectrum.


Assuntos
Antibióticos Antineoplásicos/química , Dendrímeros/química , Doxorrubicina/química , Lipossomos/química , Substâncias Macromoleculares/química , Modelos Teóricos , Antibióticos Antineoplásicos/metabolismo , Benchmarking , Cápsulas , Dendrímeros/metabolismo , Doxorrubicina/metabolismo , Lipossomos/metabolismo , Substâncias Macromoleculares/metabolismo , Teoria Quântica , Termodinâmica
10.
Phys Chem Chem Phys ; 21(26): 14053-14062, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-30652173

RESUMO

Propynal (HCCCHO) is a complex organic compound (COM) of astrochemical and astrobiological interest. We present a combined theoretical and experimental investigation on the single photon ionization of gas-phase propynal, in the 10 to 15.75 eV energy range. Fragmentation pathways of the resulting cation were investigated both theoretically and experimentally. The adiabatic ionization energy (AIE) has been measured to be AIEexp = 10.715 ± 0.005 eV using tunable VUV synchrotron radiation coupled with a double imaging photoelectron photoion coincidence (i2PEPICO) spectrometer. In the energy range under study, three fragments formed by dissociative photoionization were identified experimentally: HC3O+, HCO+ and C2H2+, and their respective appearance energies (AE) were found to be AE = 11.26 ± 0.03, 13.4 ± 0.3 and 11.15 ± 0.03 eV, respectively. Using explicitly correlated coupled cluster calculations and after inclusion of the zero point vibrational energy, core-valence and scalar relativistic effects, the AIE is calculated to be AIEcalc = 10.717 eV, in excellent agreement with the experimental finding. The appearance energies of the fragments were calculated using a similar methodological approach. To further interpret the observed vibrational structure, anharmonic frequencies were calculated for the fundamental electronic state of the propynal cation. Moreover, MRCI calculations were carried out to understand the population of excited states of the cationic species. This combined experimental and theoretical study will help to understand the presence and chemical evolution of propynal in the external parts of interstellar clouds where it has been observed.

11.
Phys Chem Chem Phys ; 21(7): 3550-3557, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30226229

RESUMO

Quantum tunneling is a common fundamental quantum mechanical phenomenon. The dynamics induced by this effect is closely connected to the shape of the potentials. Here we treat the CO2-N2 van der Waals complex dynamics using a first principles treatment where nuclear motions and nuclear spins are fully considered. This dimer is found to exhibit complex spectral and dynamical features that cannot be accounted for using standard experimental and theoretical models. We shed light on some aspects of its quantum tunneling dynamics that remained unexplained since its first evidence 85 years ago. CO2-N2 represents also an important prototype for studying the systematic (as in NH3) lifting of degeneracy due to tunneling effects and large amplitude motions. Vibrational memory and quantum localization effects are evidenced. Plural potential wells separated by potential barriers are commonly found for polyatomic organic and inorganic molecules (e.g., cis-trans isomerization and enol-keto tautomerism). The present findings are useful for understanding the complex quantum effects that may occur there.

16.
Faraday Discuss ; 212(0): 101-116, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30234209

RESUMO

The hydrogen anion has never been observed in the interstellar medium, but it is most likely present in some interstellar regions. Since direct detection appears especially difficult, improving the knowledge of the astrochemical processes involving this anion should be valuable in defining a way of indirect detection. We present the first study of the radiative association of H- and CO to form the HCO- anion within a quantum time-independent approach. We use a state-of-the-art potential energy surface which has been calculated for the present study. The calculated radiative association rate coefficient is monotonically decreasing from 6 × 10-16 to 5 × 10-19 cm3 per molecule per s across the 0.01-1000 K temperature range. At the typical temperature of the cold interstellar medium, ∼10 K, the radiative association rate is ∼2 × 10-17 cm3 per molecule per s. On the other hand, the plane wave approximation is used to calculate the HCO radiative electron attachment rate coefficient. It is found to be almost constant and also equal to 2 × 10-17 cm3 per molecule per s. Setting aside the question of the abundances of the reactants of both processes, these results demonstrate that among the two gas-phase modes of production of the HCO- anion in cold interstellar medium considered in this study, the H- + CO radiative association is dominating below 10 K while the radiative electron attachment rate is larger above 10 K.

17.
J Chem Phys ; 149(6): 064304, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30111147

RESUMO

Carbon disulfide is a prototype molecular system for studies of photophysical processes in molecules at different time scales and is also relevant to astrophysics. Here, reliable molecular properties are computed for linear SCS, bent cyc-CS2, and linear CSS forms using highly correlated post Hartree-Fock methods in conjunction with large basis sets. Structures are identified using explicitly correlated and standard coupled cluster techniques. Evolution of the lowest-lying singlet and triplet electronic states of the three isomers along the SS and CS stretching coordinates and along the bending angle are mapped at the multireference configuration interaction (MRCI)/aug-cc-pV(5+d)Z level of theory. The computations suggest that the 1B2(1Σ+) electronic state of the SCS isomer plays an important role in the photoconversion of CS2 to cyc-CS2 and CSS. Photoconversion competes with photodissociation. Plausible mechanisms for the production of S2 and CS diatomics after the photoexcitation of SCS are proposed. To aid in the identification of CSS in the laboratory and in astrophysical media, a set of spectroscopic constants and rovibrational levels for CSS are reported.

18.
Phys Chem Chem Phys ; 20(32): 20756-20765, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29989120

RESUMO

Adenine, a DNA base, exists as several tautomers and isomers that are closely lying in energy and that may form a mixture upon vaporization of solid adenine. Indeed, it is challenging to bring adenine into the gas phase, especially as a unique tautomer. The experimental conditions were tuned to prepare a jet-cooled canonical adenine (9H-adenine). This isolated DNA base was ionized by single VUV photons from a synchrotron beamline and the corresponding slow photoelectron spectrum was compared to ab initio computations of the neutral and ionic species. We report the vibronic structure of the X+ 2A'' (D0), A+ 2A' (D1) and B+ 2A'' (D2) electronic states of the 9H adenine cation, from the adiabatic ionization energy (AIE) up to AIE + 1.8 eV. Accurate AIEs are derived for the 9H-adenine (X[combining tilde] 1A') + hν → 9H-adenine+ (X+ 2A'', A+ 2A', B+ 2A'') + e- transitions. Close to the AIE, we fully assign the rich vibronic structure solely to the 9H-adenine (X 1A') + hν → 9H-adenine+ (X+ 2A'') transition. Importantly, we show that the lowest cationic electronic states of canonical adenine are coupled vibronically. The present findings are important for understanding the effects of ionizing radiation and the charge distribution on this elementary building block of life, at ultrafast, short, and long timescales.


Assuntos
Adenina/química , Cátions , Isomerismo , Cinética , Modelos Moleculares , Estrutura Molecular , Transição de Fase , Processos Fotoquímicos , Fenômenos Físicos , Teoria Quântica , Termodinâmica
19.
J Chem Phys ; 148(16): 164305, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29716237

RESUMO

High level theoretical calculations using coupled-cluster theory were performed to provide an accurate description of the electronic structure, spectroscopic properties, and stability of the triatomic negative ion comprising S, N, and P. The adiabatic electron affinities (AEAs) and vertical detachment energies (VDEs) of PNS, SPN, PSN, and cyc-PSN were calculated. The predicted AEA and VDE of the linear SPN isomer are large: 2.24 and 3.04 eV, respectively. The potential energy surfaces (PESs) of the lowest-lying electronic states of the SPN- isomer along the PN and SP bond lengths and bond angle were mapped. A set of spectroscopic parameters for SPN-, PNS-, and PSN- in their electronic ground states is obtained from the 3D PESs to help detect these species in the gas phase. The electronic excited state SPN-(12A″) is predicted to be stable with a long lifetime calculated to be 189.7 µs. The formation of SPN- in its electronic ground state through the bimolecular collision between S- + PN and N + PS- is also discussed.

20.
J Phys Chem A ; 122(24): 5354-5360, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29807421

RESUMO

Using multi configurational ab initio methodologies, we compute the potential energy curves (PECs) of the lowest electronic states of the diatomic CsS. These computations are performed using internally contracted multireference interaction configuration including Davidson correction (MRCI+Q) with and without considering spin-orbit effects. The shapes of the PECs are governed by the interactions between the two ionic states, 2Σ+ and 2Π, correlating at large internuclear separations ( RCsS) to the first ionic dissociation limit and the other electronic states correlating to the three lowest neutral dissociation limits. Computations show the importance of considering a large amount of electron correlation for the accurate description of the PECs and spectroscopy of this molecular system. As expected, these PECs are also strongly affected by the spin-orbit interaction. For the bound states, we report a set of spectroscopic parameters including equilibrium distances, dissociation energies, and vibrational and rotational constants. The effects of spin-orbit-induced changes on these parameters are also discussed. Moreover, we show that the 22Π state presents a "bowl" potential with a rather flat region extending to large RCsS distances. After being promoted to this state, wavepackets should undergo strong oscillations, similar to those observed by Zewail and co-workers for the NaI molecule. These should provide information on the shape of the PEC for the 22Π state and also on the couplings between this and the neighboring states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA