Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Am J Hum Genet ; 105(5): 947-958, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31668704

RESUMO

Human-specific duplications at chromosome 16p11.2 mediate recurrent pathogenic 600 kbp BP4-BP5 copy-number variations, which are among the most common genetic causes of autism. These copy-number polymorphic duplications are under positive selection and include three to eight copies of BOLA2, a gene involved in the maturation of cytosolic iron-sulfur proteins. To investigate the potential advantage provided by the rapid expansion of BOLA2, we assessed hematological traits and anemia prevalence in 379,385 controls and individuals who have lost or gained copies of BOLA2: 89 chromosome 16p11.2 BP4-BP5 deletion carriers and 56 reciprocal duplication carriers in the UK Biobank. We found that the 16p11.2 deletion is associated with anemia (18/89 carriers, 20%, p = 4e-7, OR = 5), particularly iron-deficiency anemia. We observed similar enrichments in two clinical 16p11.2 deletion cohorts, which included 6/63 (10%) and 7/20 (35%) unrelated individuals with anemia, microcytosis, low serum iron, or low blood hemoglobin. Upon stratification by BOLA2 copy number, our data showed an association between low BOLA2 dosage and the above phenotypes (8/15 individuals with three copies, 53%, p = 1e-4). In parallel, we analyzed hematological traits in mice carrying the 16p11.2 orthologous deletion or duplication, as well as Bola2+/- and Bola2-/- animals. The Bola2-deficient mice and the mice carrying the deletion showed early evidence of iron deficiency, including a mild decrease in hemoglobin, lower plasma iron, microcytosis, and an increased red blood cell zinc-protoporphyrin-to-heme ratio. Our results indicate that BOLA2 participates in iron homeostasis in vivo, and its expansion has a potential adaptive role in protecting against iron deficiency.

2.
Sci Adv ; 5(9): eaax2166, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31579823

RESUMO

RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neurodevelopmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely gene-disrupting variants in CSDE1 (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITS-CLIP revealed that Csde1-binding targets are enriched in autism-associated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity-related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in Drosophila result in defects in synapse growth and synaptic transmission. Our study defines a new autism-related syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission.

3.
Nat Commun ; 10(1): 4679, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616000

RESUMO

Postsynaptic density (PSD) proteins have been implicated in the pathophysiology of neurodevelopmental and psychiatric disorders. Here, we present detailed clinical and genetic data for 20 patients with likely gene-disrupting mutations in TANC2-whose protein product interacts with multiple PSD proteins. Pediatric patients with disruptive mutations present with autism, intellectual disability, and delayed language and motor development. In addition to a variable degree of epilepsy and facial dysmorphism, we observe a pattern of more complex psychiatric dysfunction or behavioral problems in adult probands or carrier parents. Although this observation requires replication to establish statistical significance, it also suggests that mutations in this gene are associated with a variety of neuropsychiatric disorders consistent with its postsynaptic function. We find that TANC2 is expressed broadly in the human developing brain, especially in excitatory neurons and glial cells, but shows a more restricted pattern in Drosophila glial cells where its disruption affects behavioral outcomes.

4.
Science ; 366(6463)2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31624180

RESUMO

Copy number variants (CNVs) are subject to stronger selective pressure than single-nucleotide variants, but their roles in archaic introgression and adaptation have not been systematically investigated. We show that stratified CNVs are significantly associated with signatures of positive selection in Melanesians and provide evidence for adaptive introgression of large CNVs at chromosomes 16p11.2 and 8p21.3 from Denisovans and Neanderthals, respectively. Using long-read sequence data, we reconstruct the structure and complex evolutionary history of these polymorphisms and show that both encode positively selected genes absent from most human populations. Our results collectively suggest that large CNVs originating in archaic hominins and introgressed into modern humans have played an important role in local population adaptation and represent an insufficiently studied source of large-scale genetic variation.

5.
Biol Psychiatry ; 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31526516

RESUMO

BACKGROUND: Variants disruptive to CHD8 (which codes for the protein CHD8 [chromodomain-helicase-DNA-binding protein 8]) are among the most common mutations revealed by exome sequencing in autism spectrum disorder (ASD). Recent work has indicated that CHD8 plays a role in the regulation of other ASD-risk genes. However, it is unclear whether a possible shared genetic ontology extends to the phenotype. METHODS: This study (N = 143; 42.7% female participants) investigated clinical and behavioral features of individuals ascertained for the presence of a known disruptive ASD-risk mutation that is 1) CHD8 (CHD8 group) (n = 15), 2) a gene targeted by CHD8 (target group) (n = 22), or 3) a gene without confirmed evidence of being targeted by CHD8 (other gene group) (n = 106). RESULTS: Results indicated shared features between the CHD8 and target groups that included less severe adaptive deficits in communication skills, similar functional language, more social motivation challenges in those with ASD, larger head circumference, higher weight, and lower seizure prevalence relative to the other gene group. CONCLUSIONS: These similarities suggest broader genetic ontology accounts for aspects of phenotypic heterogeneity. Improved understanding of the relationships between related disruptive gene events may lead us to improved understanding of shared mechanisms and lead to more focused treatments for individuals with known genetic mutations.

6.
Genet Med ; 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30504930

RESUMO

PURPOSE: To maximize the discovery of potentially pathogenic variants to better understand the diagnostic utility of genome sequencing (GS) and to assess how the presence of multiple risk events might affect the phenotypic severity in autism spectrum disorders (ASD). METHODS: GS was applied to 180 simplex and multiplex ASD families (578 individuals, 213 patients) with exome sequencing and array comparative genomic hybridization further applied to a subset for validation and cross-platform comparisons. RESULTS: We found that 40.8% of patients carried variants with evidence of disease risk, including a de novo frameshift variant in NR4A2 and two de novo missense variants in SYNCRIP, while 21.1% carried clinically relevant pathogenic or likely pathogenic variants. Patients with more than one risk variant (9.9%) were more severely affected with respect to cognitive ability compared with patients with a single or no-risk variant. We observed no instance among the 27 multiplex families where a pathogenic or likely pathogenic variant was transmitted to all affected members in the family. CONCLUSION: The study demonstrates the diagnostic utility of GS, especially for multiple risk variants that contribute to the phenotypic severity, shows the genetic heterogeneity in multiplex families, and provides evidence for new genes for follow up.

7.
Autism Res ; 11(9): 1300-1310, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30107084

RESUMO

Pathogenic disruptions to the activity-dependent neuroprotector homeobox (ADNP) gene are among the most common heterozygous genetic mutations associated with autism spectrum disorders (ASDs). Individuals with ADNP disruptions share a constellation of medical and psychiatric features, including ASD, intellectual disability (ID), dysmorphic features, and hypotonia. However, the profile of ASD symptoms associated with ADNP may differ from that of individuals with another ASD-associated single gene disruption or with ASD without a known genetic cause. The current study examined the ASD phenotype in a sample of representative youth with ADNP disruptions. Participants (N = 116, ages 4-22 years) included a cohort with ADNP mutations (n = 11) and three comparison groups with either a mutation to CHD8 (n = 11), a mutation to another ASD-associated gene (other mutation; n = 53), or ASD with no known genetic etiology (idiopathic ASD; n = 41). As expected, individuals with ADNP disruptions had higher rates of ID but less severe social affect symptoms compared to the CHD8 and Idiopathic ASD groups. In addition, verbal intelligence explained more variance in social impairment in the ADNP group compared to CHD8, other mutation, and idiopathic ASD comparison groups. Restricted and repetitive behaviors in the ADNP group were characterized by high levels of stereotyped motor behaviors, whereas the idiopathic ASD group showed high levels of restricted interests. Taken together, these results underscore the role of ADNP in cognitive functioning and suggest that social impairments in ADNP syndrome are consistent with severity of verbal deficits. Autism Res 2018, 11: 1300-1310. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Disruptions to the ADNP gene (i.e., ADNP syndrome) have been associated with autism spectrum disorder (ASD). This article describes intellectual disability, mild social difficulties, and severe repetitive motor movements in a group of 11 youth with ADNP Syndrome. We found lower rates of ASD than previously reported. Verbal skills explained individual variability in social impairment. This pattern suggests that the ADNP gene is primarily associated with learning and memory, and level of social difficulties is consistent with level of verbal impairment.

8.
Science ; 360(6393)2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880660

RESUMO

Genetic studies of human evolution require high-quality contiguous ape genome assemblies that are not guided by the human reference. We coupled long-read sequence assembly and full-length complementary DNA sequencing with a multiplatform scaffolding approach to produce ab initio chimpanzee and orangutan genome assemblies. By comparing these with two long-read de novo human genome assemblies and a gorilla genome assembly, we characterized lineage-specific and shared great ape genetic variation ranging from single- to mega-base pair-sized variants. We identified ~17,000 fixed human-specific structural variants identifying genic and putative regulatory changes that have emerged in humans since divergence from nonhuman apes. Interestingly, these variants are enriched near genes that are down-regulated in human compared to chimpanzee cerebral organoids, particularly in cells analogous to radial glial neural progenitors.


Assuntos
Evolução Molecular , Genoma Humano , Hominidae/genética , Animais , Mapeamento de Sequências Contíguas , Variação Genética , Humanos , Anotação de Sequência Molecular , Análise de Sequência de DNA
9.
Mol Phylogenet Evol ; 127: 800-812, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29935301

RESUMO

Curimatidae, the fourth largest family of detritivorous Neotropical characiform fishes, encompasses eight extant genera and over 110 species dwelling in diverse freshwater habitats from Costa Rica to Argentina. Extensive phylogenetic analyses of soft anatomy and osteology provided evidence for intergeneric and most interspecific relationships, and formed the basis of curimatid taxonomy for nearly 40 years. However, that morphological phylogeny demonstrated incomplete phylogenetic resolution at various scales and has never been tested with extensive molecular data. Herein, we infer molecular phylogenies spanning ∼70% of the known species diversity using three nuclear and three mitochondrial loci. Topologies from concatenated likelihood and Bayesian analyses and coalescent Bayesian species trees agree broadly with each other, and with the prior morphological hypothesis in many, but not all respects. All molecular analyses support the monophyly of Curimatidae and of six of its constituent genera, and agree on the placement of Curimatopsis as sister to all other curimatids. DNA-based intergeneric relationships differ substantially from prior morphological hypotheses by placing Curimata sister to Potamorhina and Psectrogaster sister to Pseudocurimata, rather than in a ladderized arrangement. Our results also resolve a major uncertainty in the morphological tree by revealing Cyphocharax, a genus for which no anatomical synapomorphy has ever been proposed, as a paraphyletic assemblage containing a monophyletic Steindachnerina and a polyphyletic Curimatella. Overall, the phylogeny expands substantially our understanding of the morphology, phylogenetics and evolution of the Curimatidae, and will guide future intrageneric studies by improving precision in the choice of comparative taxa.

11.
Cell ; 171(3): 710-722.e12, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28965761

RESUMO

To further our understanding of the genetic etiology of autism, we generated and analyzed genome sequence data from 516 idiopathic autism families (2,064 individuals). This resource includes >59 million single-nucleotide variants (SNVs) and 9,212 private copy number variants (CNVs), of which 133,992 and 88 are de novo mutations (DNMs), respectively. We estimate a mutation rate of ∼1.5 × 10-8 SNVs per site per generation with a significantly higher mutation rate in repetitive DNA. Comparing probands and unaffected siblings, we observe several DNM trends. Probands carry more gene-disruptive CNVs and SNVs, resulting in severe missense mutations and mapping to predicted fetal brain promoters and embryonic stem cell enhancers. These differences become more pronounced for autism genes (p = 1.8 × 10-3, OR = 2.2). Patients are more likely to carry multiple coding and noncoding DNMs in different genes, which are enriched for expression in striatal neurons (p = 3 × 10-3), suggesting a path forward for genetically characterizing more complex cases of autism.


Assuntos
Transtorno Autístico/genética , Variações do Número de Cópias de DNA , Polimorfismo de Nucleotídeo Único , Animais , Análise Mutacional de DNA , Feminino , Estudo de Associação Genômica Ampla , Humanos , Mutação INDEL , Masculino , Camundongos
12.
Nat Ecol Evol ; 1(3): 69, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580430

RESUMO

Segmental duplications contribute to human evolution, adaptation and genomic instability but are often poorly characterized. We investigate the evolution, genetic variation and coding potential of human-specific segmental duplications (HSDs). We identify 218 HSDs based on analysis of 322 deeply sequenced archaic and contemporary hominid genomes. We sequence 550 human and nonhuman primate genomic clones to reconstruct the evolution of the largest, most complex regions with protein-coding potential (n=80 genes/33 gene families). We show that HSDs are non-randomly organized, associate preferentially with ancestral ape duplications termed "core duplicons", and evolved primarily in an interspersed inverted orientation. In addition to Homo sapiens-specific gene expansions (e.g., TCAF1/2), we highlight ten gene families (e.g., ARHGAP11B and SRGAP2C) where copy number never returns to the ancestral state, there is evidence of mRNA splicing, and no common gene-disruptive mutations are observed in the general population. Such duplicates are candidates for the evolution of human-specific adaptive traits.

13.
Nat Neurosci ; 20(8): 1043-1051, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628100

RESUMO

Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,688 patients with NDD identified 21 new patients with identical missense mutations. One recurrent site substitution (p.A636T) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology.


Assuntos
Sequência de Aminoácidos/genética , Transtorno Autístico/genética , Exoma/genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Feminino , Humanos , Masculino , Receptores de AMPA/genética , Receptores de Glutamato/genética
14.
Nat Genet ; 49(4): 515-526, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28191889

RESUMO

Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.


Assuntos
Transtorno Autístico/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Feminino , Humanos , Masculino , Mutação/genética , Fenótipo
15.
Genome Res ; 27(5): 677-685, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27895111

RESUMO

In an effort to more fully understand the full spectrum of human genetic variation, we generated deep single-molecule, real-time (SMRT) sequencing data from two haploid human genomes. By using an assembly-based approach (SMRT-SV), we systematically assessed each genome independently for structural variants (SVs) and indels resolving the sequence structure of 461,553 genetic variants from 2 bp to 28 kbp in length. We find that >89% of these variants have been missed as part of analysis of the 1000 Genomes Project even after adjusting for more common variants (MAF > 1%). We estimate that this theoretical human diploid differs by as much as ∼16 Mbp with respect to the human reference, with long-read sequencing data providing a fivefold increase in sensitivity for genetic variants ranging in size from 7 bp to 1 kbp compared with short-read sequence data. Although a large fraction of genetic variants were not detected by short-read approaches, once the alternate allele is sequence-resolved, we show that 61% of SVs can be genotyped in short-read sequence data sets with high accuracy. Uncoupling discovery from genotyping thus allows for the majority of this missed common variation to be genotyped in the human population. Interestingly, when we repeat SV detection on a pseudodiploid genome constructed in silico by merging the two haploids, we find that ∼59% of the heterozygous SVs are no longer detected by SMRT-SV. These results indicate that haploid resolution of long-read sequencing data will significantly increase sensitivity of SV detection.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Genoma Humano , Variação Estrutural do Genoma , Haploidia , Análise de Sequência de DNA/métodos , Mapeamento de Sequências Contíguas/normas , Projeto Genoma Humano , Humanos , Análise de Sequência de DNA/normas
16.
Nucleic Acids Res ; 45(D1): D804-D811, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27907889

RESUMO

Whole-exome and whole-genome sequencing have facilitated the large-scale discovery of de novo variants in human disease. To date, most de novo discovery through next-generation sequencing focused on congenital heart disease and neurodevelopmental disorders (NDDs). Currently, de novo variants are one of the most significant risk factors for NDDs with a substantial overlap of genes involved in more than one NDD. To facilitate better usage of published data, provide standardization of annotation, and improve accessibility, we created denovo-db (http://denovo-db.gs.washington.edu), a database for human de novo variants. As of July 2016, denovo-db contained 40 different studies and 32,991 de novo variants from 23,098 trios. Database features include basic variant information (chromosome location, change, type); detailed annotation at the transcript and protein levels; severity scores; frequency; validation status; and, most importantly, the phenotype of the individual with the variant. We included a feature on our browsable website to download any query result, including a downloadable file of the full database with additional variant details. denovo-db provides necessary information for researchers to compare their data to other individuals with the same phenotype and also to controls allowing for a better understanding of the biology of de novo variants and their contribution to disease.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Variação Genética , Mutação em Linhagem Germinativa , Polimorfismo de Nucleotídeo Único , Estudos de Associação Genética , Humanos , Anotação de Sequência Molecular , Navegador
17.
Nat Commun ; 7: 13316, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824329

RESUMO

Recurrent de novo (DN) and likely gene-disruptive (LGD) mutations contribute significantly to autism spectrum disorders (ASDs) but have been primarily investigated in European cohorts. Here, we sequence 189 risk genes in 1,543 Chinese ASD probands (1,045 from trios). We report an 11-fold increase in the odds of DN LGD mutations compared with expectation under an exome-wide neutral model of mutation. In aggregate, ∼4% of ASD patients carry a DN mutation in one of just 29 autism risk genes. The most prevalent gene for recurrent DN mutations is SCN2A (1.1% of patients) followed by CHD8, DSCAM, MECP2, POGZ, WDFY3 and ASH1L. We identify novel DN LGD recurrences (GIGYF2, MYT1L, CUL3, DOCK8 and ZNF292) and DN mutations in previous ASD candidates (ARHGAP32, NCOR1, PHIP, STXBP1, CDKL5 and SHANK1). Phenotypic follow-up confirms potential subtypes and highlights how large global cohorts might be leveraged to prove the pathogenic significance of individually rare mutations.


Assuntos
Transtorno do Espectro Autista/genética , Mutação/genética , Grupo com Ancestrais do Continente Asiático/genética , Estudos de Coortes , Análise Mutacional de DNA , Exoma/genética , Predisposição Genética para Doença , Geografia , Humanos , Padrões de Herança/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
18.
Data Brief ; 9: 128-42, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27642619

RESUMO

The data presented herein support the article "Molecular phylogenetics of the Neotropical fish family Prochilodontidae (Teleostei: Characiformes)" (B.F. Melo, B.L. Sidlauskas, B.W. Frable, K. Hoekzema, R.P. Vari, C. Oliveira, 2016) [1], which inferred phylogenetic relationships of the prochilodontids from an alignment of three mitochondrial and three nuclear loci (5279 bp) for all 21 recognized prochilodontid species and 22 related species. Herein, we provide primer sequences, museum voucher information and GenBank accession numbers. Additionally, we more fully describe the maximum-likelihood and Bayesian phylogenetic analyses of the concatenated dataset, detail the Bayesian species tree analysis, and provide the maximum likelihood topologies congruent with prior morphological hypotheses that were compared with the unconstrained tree using Shimodaira-Hasegawa tests.

19.
Mol Phylogenet Evol ; 102: 189-201, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27262428

RESUMO

Migratory detritivores of the characiform family Prochilodontidae occur throughout the freshwaters of much of South America. Prochilodontids often form massive populations and many species achieve substantial body sizes; a combination that makes them one of the most commercially important fish groups on the continent. Their economic significance notwithstanding, prochilodontids have never been the subject of a comprehensive molecular phylogenetic analysis. Using three mitochondrial and three nuclear loci spanning all prochilodontid species, we generated a novel phylogenetic hypothesis for the family. Our results strongly support monophyly of the family and the three included genera. A novel, highly supported placement of Ichthyoelephas sister to the clade containing Prochilodus and Semaprochilodus diverges from a previous morphological hypothesis. Most previously hypothesized interspecific relationships are corroborated and some longstanding polytomies within Prochilodus and Semaprochilodus are resolved. The morphologically similar P. brevis, P. lacustris, P. nigricans and P. rubrotaeniatus are embedded within what is herein designated as the P. nigricans group. Species limits and distributions of these species are problematic and the group clearly merits taxonomic revision.


Assuntos
Caraciformes/classificação , Animais , Núcleo Celular/genética , Caraciformes/genética , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Mitocôndrias/genética , Filogenia , Análise de Sequência de DNA , América do Sul
20.
Mol Ecol ; 25(12): 2754-72, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27037911

RESUMO

The interplay of natural selection and genetic drift, influenced by geographic isolation, mating systems and population size, determines patterns of genetic diversity within species. The sperm whale provides an interesting example of a long-lived species with few geographic barriers to dispersal. Worldwide mtDNA diversity is relatively low, but highly structured among geographic regions and social groups, attributed to female philopatry. However, it is unclear whether this female philopatry is due to geographic regions or social groups, or how this might vary on a worldwide scale. To answer these questions, we combined mtDNA information for 1091 previously published samples with 542 newly obtained DNA profiles (394-bp mtDNA, sex, 13 microsatellites) including the previously unsampled Indian Ocean, and social group information for 541 individuals. We found low mtDNA diversity (π = 0.430%) reflecting an expansion event <80 000 years bp, but strong differentiation by ocean, among regions within some oceans, and among social groups. In comparison, microsatellite differentiation was low at all levels, presumably due to male-mediated gene flow. A hierarchical amova showed that regions were important for explaining mtDNA variance in the Indian Ocean, but not Pacific, with social group sampling in the Atlantic too limited to include in analyses. Social groups were important in partitioning mtDNA and microsatellite variance within both oceans. Therefore, both geographic philopatry and social philopatry influence genetic structure in the sperm whale, but their relative importance differs by sex and ocean, reflecting breeding behaviour, geographic features and perhaps a more recent origin of sperm whales in the Pacific. By investigating the interplay of evolutionary forces operating at different temporal and geographic scales, we show that sperm whales are perhaps a unique example of a worldwide population expansion followed by rapid assortment due to female social organization.


Assuntos
Variação Genética , Genética Populacional , Cachalote/genética , Animais , Comportamento Animal , DNA Mitocondrial/genética , Feminino , Fluxo Gênico , Genótipo , Masculino , Repetições de Microssatélites , Filogeografia , Densidade Demográfica , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA