Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Rep ; 9(1): 16304, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704966


Neutrophils release their chromatin into the extracellular space upon activation. These web-like structures are called neutrophil extracellular traps (NETs) and have potent prothrombotic and proinflammatory properties. In ST-elevation myocardial infarction (STEMI), NETs correlate with increased infarct size. The interplay of neutrophils and monocytes impacts cardiac remodeling. Monocyte subsets are classified as classical, intermediate and non-classical monocytes. In the present study, in vitro stimulation with NETs led to an increase of intermediate monocytes and reduced expression of CX3CR1 in all subsets. Intermediate monocytes have been associated with poor outcome, while non-classical CX3CR1-positive monocytes could have reparative function after STEMI. We characterized monocyte subsets and NET markers at the culprit lesion site of STEMI patients (n = 91). NET surrogate markers were increased and correlated with larger infarct size and with fewer non-classical monocytes. Intermediate and especially non-classical monocytes were increased at the culprit site compared to the femoral site. Low CX3CR1 expression of monocytes correlated with high NET markers and increased infarct size. In this translational system, causality cannot be proven. However, our data suggest that NETs interfere with monocytic differentiation and receptor expression, presumably promoting a subset shift at the culprit lesion site. Reduced monocyte CX3CR1 expression may compromise myocardial salvage.

Basic Res Cardiol ; 114(5): 33, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31312919


Leukocyte-mediated inflammation is central in atherothrombosis and ST-segment elevation myocardial infarction (STEMI). Neutrophil extracellular traps (NETs) have been shown to enhance atherothrombosis and stimulate fibroblast function. We analyzed the effects of NETs on cardiac remodeling after STEMI. We measured double-stranded (ds)DNA and citrullinated histone H3 (citH3) as NET surrogate markers in human culprit site and femoral blood collected during primary percutaneous coronary intervention (n = 50). Fibrocytes were characterized in whole blood by flow cytometry, and in culprit site thrombi and myocardium by immunofluorescence. To investigate mechanisms of fibrocyte activation, isolated NETs were used to induce fibrocyte responses in vitro. Enzymatic infarct size was assessed using creatine-phosphokinase isoform MB area under the curve. Left ventricular function was measured by transthoracic echocardiography. NET surrogate markers were increased at the culprit site compared to the femoral site and were positively correlated with infarct size and left ventricular dysfunction at follow-up. In vitro, NETs promoted fibrocyte differentiation from monocytes and induced fibrocyte activation. Highly activated fibrocytes accumulated at the culprit site and in the infarct transition zone. Our data suggest that NETs might be important mediators of fibrotic remodeling after STEMI, possibly by stimulating fibrocytes.

Armadilhas Extracelulares , Fibroblastos/patologia , Leucócitos/patologia , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Remodelação Ventricular/fisiologia , Adulto , Idoso , Feminino , Fibrose/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio com Supradesnível do Segmento ST/imunologia , Infarto do Miocárdio com Supradesnível do Segmento ST/patologia