Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Nat Commun ; 11(1): 5829, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203887

RESUMO

A SARS-CoV2 super-spreading event occurred during carnival in a small town in Germany. Due to the rapidly imposed lockdown and its relatively closed community, this town was seen as an ideal model to investigate the infection fatality rate (IFR). Here, a 7-day seroepidemiological observational study was performed to collect information and biomaterials from a random, household-based study population. The number of infections was determined by IgG analyses and PCR testing. We found that of the 919 individuals with evaluable infection status, 15.5% (95% CI:[12.3%; 19.0%]) were infected. This is a fivefold higher rate than the reported cases for this community (3.1%). 22.2% of all infected individuals were asymptomatic. The estimated IFR was 0.36% (95% CI:[0.29%; 0.45%]) for the community and 0.35% [0.28%; 0.45%] when age-standardized to the population of the community. Participation in carnival increased both infection rate (21.3% versus 9.5%, p < 0.001) and number of symptoms (estimated relative mean increase 1.6, p = 0.007). While the infection rate here is not representative for Germany, the IFR is useful to estimate the consequences of the pandemic in places with similar healthcare systems and population characteristics. Whether the super-spreading event not only increases the infection rate but also affects the IFR requires further investigation.

2.
Mutat Res ; 858-860: 503253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33198934

RESUMO

Genomic instability is a characteristic of a majority of human malignancies. Chromosomal instability is a common form of genomic instability that can be caused by defects in mitotic checkpoint genes. Chromosomal aberrations in peripheral blood are also indicative of genotoxic exposure and potential cancer risk. We evaluated associations between inherited genetic variants in 33 mitotic checkpoint genes and the frequency of chromosomal aberrations (CAs) in the presence and absence of environmental genotoxic exposure. Associations with both chromosome and chromatid type of aberrations were evaluated in two cohorts of healthy individuals, namely an exposed and a reference group consisting of 607 and 866 individuals, respectively. Binary logistic and linear regression analyses were performed for the association studies. Bonferroni-corrected significant p-value was 5 × 10-4 for 99 tests based on the number of analyzed genes and phenotypes. In the reference group the most prominent associations were found with variants in CCNB1, a master regulator of mitosis, and in genes involved in kinetochore function, including CENPH and TEX14, whereas in the exposed group the main association was found with variants in TTK, also an important gene in kinetochore function. How the identified variants may affect the fidelity of mitotic checkpoint remains to be investigated, however, the present study suggests that genetic variation may partly explain interindividual variation in the formation of CAs.

3.
Blood ; 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33152759

RESUMO

T-cell lymphoblastic lymphoma (T-LBL) is a heterogeneous malignancy of lymphoblasts committed to T-cell lineage. Dismal outcomes (15-30%) in case of T-LBL relapses warrants for establishing risk-based treatment in future. This is a first comprehensive, systematic, integrated genome-wide analysis including relapse cases aimed towards identifying molecular markers of prognostic relevance for T-LBL. NOTCH1 was identified as putative driver for T-LBL. Activated NOTCH/PI3K-AKT signaling axis and alterations in cell cycle regulators constitutes the core oncogenic program for T-LBL. Mutated KMT2D was identified as a prognostic marker. The cumulative incidence of relapse was 47±17% in patients with KMT2D mutations compared with 14±3% in KMT2D wildtype. Structural analysis of the mutated domains of KMT2D revealed plausible impact on the structure and functional consequences. These findings provide new insights into the pathogenesis of T-LBL including high translational potential. The ongoing trial LBL 2018 (NCT04043494) allows prospective validation and subsequent fine-tuning of the stratification criteria for T-LBL risk groups to improve survival of the pediatric patients.

4.
Mov Disord ; 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107653

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by intracellular accumulations of α-synuclein and nerve cell loss in striatonigral and olivopontocerebellar structures. Epidemiological and clinical studies have reported potential involvement of autoimmune mechanisms in MSA pathogenesis. However, genetic etiology of this interaction remains unknown. We aimed to investigate genetic overlap between MSA and 7 autoimmune diseases and to identify shared genetic loci. METHODS: Genome-wide association study summary statistics of MSA and 7 autoimmune diseases were combined in cross-trait conjunctional false discovery rate analysis to explore overlapping genetic background. Expression of selected candidate genes was compared in transgenic MSA mice and wild-type mice. Genetic variability of candidate genes was further investigated using independent whole-exome genotyping data from large cohorts of MSA and autoimmune disease patients and healthy controls. RESULTS: We observed substantial polygenic overlap between MSA and inflammatory bowel disease and identified 3 shared genetic loci with leading variants upstream of the DENND1B and RSP04 genes, and in intron of the C7 gene. Further, the C7 gene showed significantly dysregulated expression in the degenerating midbrain of transgenic MSA mice compared with wild-type mice and had elevated burden of protein-coding variants in independent MSA and inflammatory bowel disease cohorts. CONCLUSION: Our study provides evidence of shared genetic etiology between MSA and inflammatory bowel disease with an important role of the C7 gene in both phenotypes, with the implication of immune and gut dysfunction in MSA pathophysiology. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society.

5.
Mol Psychiatry ; 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057169

RESUMO

Developmental dyslexia (DD) is a learning disorder affecting the ability to read, with a heritability of 40-60%. A notable part of this heritability remains unexplained, and large genetic studies are warranted to identify new susceptibility genes and clarify the genetic bases of dyslexia. We carried out a genome-wide association study (GWAS) on 2274 dyslexia cases and 6272 controls, testing associations at the single variant, gene, and pathway level, and estimating heritability using single-nucleotide polymorphism (SNP) data. We also calculated polygenic scores (PGSs) based on large-scale GWAS data for different neuropsychiatric disorders and cortical brain measures, educational attainment, and fluid intelligence, testing them for association with dyslexia status in our sample. We observed statistically significant (p < 2.8 × 10-6) enrichment of associations at the gene level, for LOC388780 (20p13; uncharacterized gene), and for VEPH1 (3q25), a gene implicated in brain development. We estimated an SNP-based heritability of 20-25% for DD, and observed significant associations of dyslexia risk with PGSs for attention deficit hyperactivity disorder (at pT = 0.05 in the training GWAS: OR = 1.23[1.16; 1.30] per standard deviation increase; p = 8 × 10-13), bipolar disorder (1.53[1.44; 1.63]; p = 1 × 10-43), schizophrenia (1.36[1.28; 1.45]; p = 4 × 10-22), psychiatric cross-disorder susceptibility (1.23[1.16; 1.30]; p = 3 × 10-12), cortical thickness of the transverse temporal gyrus (0.90[0.86; 0.96]; p = 5 × 10-4), educational attainment (0.86[0.82; 0.91]; p = 2 × 10-7), and intelligence (0.72[0.68; 0.76]; p = 9 × 10-29). This study suggests an important contribution of common genetic variants to dyslexia risk, and novel genomic overlaps with psychiatric conditions like bipolar disorder, schizophrenia, and cross-disorder susceptibility. Moreover, it revealed the presence of shared genetic foundations with a neural correlate previously implicated in dyslexia by neuroimaging evidence.

6.
BMC Med Genet ; 21(1): 178, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912153

RESUMO

BACKGROUND: A Genetic risk score for coronary artery disease (CAD) improves the ability of predicting coronary heart disease (CHD). It is unclear whether i) the use of a CAD genetic risk score is superior to the measurement of coronary artery calcification (CAC) for CHD risk assessment and ii) the CHD risk assessment using a CAD genetic risk score differs between men and women. METHODS: We included 4041 participants (age-range: 45-76 years, 1919 men) of the Heinz Nixdorf Recall study without CHD or stroke at baseline. A standardized weighted CAD genetic risk score was constructed using 70 known genetic variants. The risk score was divided into quintiles (Q1-Q5). We specified low (Q1), intermediate (Q2-Q4) and high (Q5) genetic risk groups. Incident CHD was defined as fatal and non-fatal myocardial infarction, stroke and coronary death. The association between the genetic risk score and genetic risk groups with incident CHD was assessed using Cox models to estimate hazard ratios (HR) and 95%-confidence intervals (CI). The models were adjusted by age and sex (Model1), as well as by established CHD risk factors (RF) and CAC (Model2). The analyses were further stratified by sex and controlled for multiple testing. RESULTS: During a median follow-up time of 11.6 ± 3.7 years, 343 participants experienced CHD events (219 men). Per-standard deviation (SD) increase in the genetic risk score was associated with 18% increased risk for incident CHD (Model1: p = 0.002) which did not change after full adjustment (Model2: HR = 1.18 per-SD (p = 0.003)). In Model2 we observed a 60% increased CHD risk in the high (p = 0.009) compared to the low genetic risk group. Stratifying by sex, only men showed statistically significantly higher risk for CHD (Model2: HR = 1.23 per-SD (p = 0.004); intermediate: HR = 1.52 (p = 0.04) and high: HR = 1.88 (p = 0.008)) with no statistically significant risk observed in women. CONCLUSION: Our results suggest that the CAD genetic risk score could be useful for CHD risk prediction, at least in men belonging to the higher genetic risk group, but it does not outbalance the value of CT-based quantification of CAC which works independently on both men and women and allows better risk stratification in both the genders.


Assuntos
Doença da Artéria Coronariana/genética , Infarto do Miocárdio/genética , Medição de Risco/estatística & dados numéricos , Acidente Vascular Cerebral/genética , Idoso , Doença da Artéria Coronariana/diagnóstico , Feminino , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Prognóstico , Modelos de Riscos Proporcionais , Medição de Risco/métodos , Fatores de Risco , Acidente Vascular Cerebral/diagnóstico , Tomografia Computadorizada por Raios X
7.
Sci Rep ; 10(1): 14952, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917957

RESUMO

Epidermodysplasia verruciformis (EV) is a genodermatosis characterized by the inability of keratinocytes to control cutaneous ß-HPV infection and a high risk for non-melanoma skin cancer (NMSC). Bi-allelic loss of function variants in TMC6, TMC8, and CIB1 predispose to EV. The correlation between these proteins and ß-HPV infection is unclear. Its elucidation will advance the understanding of HPV control in human keratinocytes and development of NMSC. We generated a cell culture model by CRISPR/Cas9-mediated deletion of CIB1 to study the function of CIB1 in keratinocytes. Nine CIB1 knockout and nine mock control clones were generated originating from a human keratinocyte line. We observed small changes in gene expression as a result of CIB1 knockout, which is consistent with the clearly defined phenotype of EV patients. This suggests that the function of human CIB1 in keratinocytes is limited and involves the restriction of ß-HPV. The presented model is useful to investigate CIB1 interaction with ß-HPV in future studies.

8.
Nutrients ; 12(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731631

RESUMO

Estimated Δ5-desaturase (D5D) and Δ6-desaturase (D6D) are key enzymes in metabolism of polyunsaturated fatty acids (PUFA) and have been associated with cardiometabolic risk; however, causality needs to be clarified. We applied two-sample Mendelian randomization (MR) approach using a representative sub-cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study and public data from DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) and Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) genome-wide association studies (GWAS). Furthermore, we addressed confounding by linkage disequilibrium (LD) as all instruments from FADS1 (encoding D5D) are in LD with FADS2 (encoding D6D) variants. Our univariable MRs revealed risk-increasing total effects of both, D6D and D5D on type 2 diabetes (T2DM) risk; and risk-increasing total effect of D6D on risk of coronary artery disease (CAD). The multivariable MR approach could not unambiguously allocate a direct causal effect to either of the individual desaturases. Our results suggest that D6D is causally linked to cardiometabolic risk, which is likely due to downstream production of fatty acids and products resulting from high D6D activity. For D5D, we found indication for causal effects on T2DM and CAD, which could, however, still be confounded by LD.

9.
Mol Autism ; 11(1): 54, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576230

RESUMO

Advanced paternal age (APA) is a risk factor for several neurodevelopmental disorders, including autism and schizophrenia. The potential mechanisms conferring this risk are poorly understood. Here, we show that the personality traits schizotypy and neuroticism correlated with paternal age in healthy subjects (N = 677). Paternal age was further positively associated with gray matter volume (VBM, N = 342) in the right prefrontal and the right medial temporal cortex. The integrity of fiber tracts (DTI, N = 222) connecting these two areas correlated positively with paternal age. Genome-wide methylation analysis in humans showed differential methylation in APA individuals, linking APA to epigenetic mechanisms. A corresponding phenotype was obtained in our rat model. APA rats displayed social-communication deficits and emitted fewer pro-social ultrasonic vocalizations compared to controls. They further showed repetitive and stereotyped patterns of behavior, together with higher anxiety during early development. At the neurobiological level, microRNAs miR-132 and miR-134 were both differentially regulated in rats and humans depending on APA. This study demonstrates associations between APA and social behaviors across species. They might be driven by changes in the expression of microRNAs and/or epigenetic changes regulating neuronal plasticity, leading to brain morphological changes and fronto-hippocampal connectivity, a network which has been implicated in social interaction.

10.
Eur Neuropsychopharmacol ; 36: 10-17, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451266

RESUMO

While the hippocampus remains a region of high interest for neuropsychiatric research, the precise contributors to hippocampal morphometry are still not well understood. We and others previously reported a hippocampus specific effect of a tescalcin gene (TESC) regulating single nucleotide polymorphism (rs7294919) on gray matter volume. Here we aimed to replicate and extend these findings. Two complementary morphometric approaches (voxel based morphometry (VBM) and automated volumetric segmentation) were applied in a well-powered cohort from the Marburg-Münster Affective Disorder Cohort Study (MACS) including N=1137 participants (n=636 healthy controls, n=501 depressed patients). rs7294919 homozygous T-allele genotype was significantly associated with lower hippocampal gray matter density as well as with reduced hippocampal volume. Exploratory whole brain VBM analyses revealed no further associations with gray matter volume outside the hippocampus. No interaction effects of rs7294919 with depression nor with childhood trauma on hippocampal morphometry could be detected. Hippocampal subfield analyses revealed similar effects of rs7294919 in all hippocampal subfields. In sum, our results replicate a hippocampus specific effect of rs7294919 on brain structure. Due to the robust evidence for a pronounced association between the reported polymorphism and hippocampal morphometry, future research should consider investigating the potential clinical and functional relevance of the reported association.

11.
PLoS One ; 15(5): e0232735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379805

RESUMO

BACKGROUND: Atherosclerosis is the primary cause of coronary artery disease (CAD). Several observational studies have examined the association of traditional CAD risk factors with the progression of coronary artery calcification (CAC). In our study we investigated the effect of 11 different genetic risk scores associated with CAD and CAD risk factors on the progression of CAC. METHODS AND RESULTS: We included 3097 participants from the Heinz Nixdorf Recall study who had available CAC measurements at baseline (CACb) and at the 5-year follow-up (CAC5y). A weighted genetic risk score for CAD and each of the CAD-associated risk factors was constructed. Multiple regression analyses were applied to i) the difference between the observed log(CAC5y+1) (log(obs)) and expected log(CAC5y+1) (log(exp)) at the 5-year follow-up following the individual's log(CACb+1) percentile for the time between scans (log(obs)-log(exp)) and ii) the 5-year CAC progression, defined as 5*(log(CAC5y+1)-log(CACb+1))/time between the scans, adjusted for age, sex, and log(CACb+1) as well as for risk factors. The median percent deviation from the expected (CAC5y+1) and the 5-year progression of (CAC+1) in our study were 0 (first quartile: Q1; third quartile: Q3: -0.32; 0.48) and 45.4% (0%; 171.0%) respectively. In the age-, sex- and log(CACb+1)-adjusted model, the per-standard deviation (SD) increase in CAD genetic risk score was associated with the percent deviation from the expected (CAC5y+1) (9.7% (95% confidence interval: 5.2%; 14.5%), p = 1.6x10-5) and the 5-year progression of CAC (7.1% (3.0%; 11.4%), p = 0.0005). The CAD genetic risk score explains an additional 0.6% of the observed phenotypic variance for "log(obs)-log(exp)" and 0.4% for 5-year progression of CAC. Additionally, the per-SD increase in the CAC genetic risk score was associated with the percent deviation from the expected (CAC5y+1) (6.2% (1.9%; 10.8%, p = 0.005)) explaining an additional 0.2% of the observed phenotypic variance. However, the per-SD increase in the CAC genetic risk score was not associated with the 5-year progression of CAC (4.4% (0.4%; 8.5%), p = 0.03) after multiple testing. Adjusting for risk factors did not change the results. None of the other genetic risk scores showed an association with the percent deviation from the expected (CAC5y+1) or with the 5-year progression of CAC. CONCLUSIONS: The association of the CAC genetic risk score and the CAD genetic risk score provides evidence that genetic determinants for CAC and CAD influence the progression of CAC.


Assuntos
Doença da Artéria Coronariana/genética , Vasos Coronários/patologia , Calcificação Vascular/genética , Idoso , Doença da Artéria Coronariana/patologia , Vasos Coronários/metabolismo , Progressão da Doença , Feminino , Seguimentos , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Calcificação Vascular/patologia
12.
Sci Rep ; 10(1): 4892, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184465

RESUMO

To suggest candidate genes involved in periodontitis, we combined gene expression data of periodontal biopsies from Collaborative Cross (CC) mouse lines, with previous reported quantitative trait loci (QTL) in mouse and with human genome-wide association studies (GWAS) associated with periodontitis. Periodontal samples from two susceptible, two resistant and two lines that showed bone formation after periodontal infection were collected during infection and naïve status. Differential expressed genes (DEGs) were analyzed in a case-control and case-only design. After infection, eleven protein-coding genes were significantly stronger expressed in resistant CC lines compared to susceptible ones. Of these, the most upregulated genes were MMP20 (P = 0.001), RSPO4 (P = 0.032), CALB1 (P = 1.06×10-4), and AMTN (P = 0.05). In addition, human orthologous of candidate genes were tested for their association in a case-controls samples of aggressive (AgP) and chronic (CP) periodontitis (5,095 cases, 9,908 controls). In this analysis, variants at two loci, TTLL11/PTGS1 (rs9695213, P = 5.77×10-5) and RNASE2 (rs2771342, P = 2.84×10-5) suggested association with both AgP and CP. In the association analysis with AgP only, the most significant associations were located at the HLA loci HLA-DQH1 (rs9271850, P = 2.52×10-14) and HLA-DPA1 (rs17214512, P = 5.14×10-5). This study demonstrates the utility of the CC RIL populations as a suitable model to investigate the mechanism of periodontal disease.


Assuntos
Periodontite Agressiva/etiologia , Periodontite Agressiva/genética , Periodontite Crônica/etiologia , Periodontite Crônica/genética , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Camundongos , Modelos Teóricos , Locos de Características Quantitativas/genética
13.
BMC Med Genet ; 21(1): 62, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32220223

RESUMO

BACKGROUND: To examine the association between lipoprotein(a) (Lp(a)) levels, LPA (rs10455872 and rs3798220) and IL1F9 (rs13415097) single nucleotide polymorphisms (SNPs) with coronary artery calcification (CAC), an important predictor for coronary artery disease (CAD). METHODS: We used data from 3799 (mean age ± SD: 59.0 ± 7.7 years, 47.1% men) Heinz Nixdorf Recall study participants. We applied linear regression models to explore the relation between the log-transformed Lp(a) levels and LPA and IL1F9 SNPs with loge (CAC + 1). The association between the SNPs and log-transformed Lp(a) levels was further assessed using linear regression. The models were adjusted for age and sex (Model 1) and additionally for Lp(a) levels (Model 2). RESULTS: We observed a statistically significant association between log-transformed Lp(a) levels and CAC (Model 1: beta per log-unit increase in Lp(a) levels = 0.11; 95% confidence interval [95% CI] [0.04; 0.18], p = 0.002). Furthermore, the LPA SNP rs10455872 showed a statistically significant association with CAC (Model 1: beta per allele = 0.37 [0.14; 0.61], p = 0.002). The association between rs10455872 and CAC was attenuated after adjustment for Lp(a) levels (Model 2: beta per allele = 0.26 [- 0.01; 0.53], p = 0.06). Both LPA SNPs also showed a statistically significant association with Lp(a) levels (Model 1: betars10455872 per allele: 1.56 [1.46; 1.65], p < 0.0001 and betars3798220 per allele: 1.51 [1.33; 1.69], p < 0.0001)). The Mendelian randomization analysis showed that Lp(a) is a causal risk factor for CAC (estimate per log-unit increase in Lp(a) levels (95% CI), p: 0.27 [0.11; 0.44], p = 0.001). The IL1F9 SNP did not show any statistically significant association with Lp(a) levels or with CAC. CONCLUSIONS: We provide evidence for the association of LPA rs10455872 with higher levels of Lp(a) and CAC in our study. The results of our study suggest that rs10455872, mediated by Lp(a) levels, might play a role in promoting the development of atherosclerosis leading to cardiovascular disease events.


Assuntos
Doença da Artéria Coronariana , Lipoproteína(a)/sangue , Lipoproteína(a)/genética , Polimorfismo de Nucleotídeo Único , Calcificação Vascular , Idoso , Alelos , Aterosclerose/sangue , Aterosclerose/epidemiologia , Aterosclerose/genética , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Vasos Coronários/patologia , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Calcificação Vascular/sangue , Calcificação Vascular/epidemiologia , Calcificação Vascular/genética
14.
Transl Psychiatry ; 10(1): 57, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32066727

RESUMO

Bipolar disorder (BD) is a highly heritable neuropsychiatric disease characterized by recurrent episodes of depression and mania. Research suggests that the cumulative impact of common alleles explains 25-38% of phenotypic variance, and that rare variants may contribute to BD susceptibility. To identify rare, high-penetrance susceptibility variants for BD, whole-exome sequencing (WES) was performed in three affected individuals from each of 27 multiply affected families from Spain and Germany. WES identified 378 rare, non-synonymous, and potentially functional variants. These spanned 368 genes, and were carried by all three affected members in at least one family. Eight of the 368 genes harbored rare variants that were implicated in at least two independent families. In an extended segregation analysis involving additional family members, five of these eight genes harbored variants showing full or nearly full cosegregation with BD. These included the brain-expressed genes RGS12 and NCKAP5, which were considered the most promising BD candidates on the basis of independent evidence. Gene enrichment analysis for all 368 genes revealed significant enrichment for four pathways, including genes reported in de novo studies of autism (padj < 0.006) and schizophrenia (padj = 0.015). These results suggest a possible genetic overlap with BD for autism and schizophrenia at the rare-sequence-variant level. The present study implicates novel candidate genes for BD development, and may contribute to an improved understanding of the biological basis of this common and often devastating disease.

15.
J Allergy Clin Immunol ; 145(4): 1208-1218, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31707051

RESUMO

BACKGROUND: Fifteen percent of atopic dermatitis (AD) liability-scale heritability could be attributed to 31 susceptibility loci identified by using genome-wide association studies, with only 3 of them (IL13, IL-6 receptor [IL6R], and filaggrin [FLG]) resolved to protein-coding variants. OBJECTIVE: We examined whether a significant portion of unexplained AD heritability is further explained by low-frequency and rare variants in the gene-coding sequence. METHODS: We evaluated common, low-frequency, and rare protein-coding variants using exome chip and replication genotype data of 15,574 patients and 377,839 control subjects combined with whole-transcriptome data on lesional, nonlesional, and healthy skin samples of 27 patients and 38 control subjects. RESULTS: An additional 12.56% (SE, 0.74%) of AD heritability is explained by rare protein-coding variation. We identified docking protein 2 (DOK2) and CD200 receptor 1 (CD200R1) as novel genome-wide significant susceptibility genes. Rare coding variants associated with AD are further enriched in 5 genes (IL-4 receptor [IL4R], IL13, Janus kinase 1 [JAK1], JAK2, and tyrosine kinase 2 [TYK2]) of the IL13 pathway, all of which are targets for novel systemic AD therapeutics. Multiomics-based network and RNA sequencing analysis revealed DOK2 as a central hub interacting with, among others, CD200R1, IL6R, and signal transducer and activator of transcription 3 (STAT3). Multitissue gene expression profile analysis for 53 tissue types from the Genotype-Tissue Expression project showed that disease-associated protein-coding variants exert their greatest effect in skin tissues. CONCLUSION: Our discoveries highlight a major role of rare coding variants in AD acting independently of common variants. Further extensive functional studies are required to detect all potential causal variants and to specify the contribution of the novel susceptibility genes DOK2 and CD200R1 to overall disease susceptibility.

16.
Cereb Cortex ; 30(2): 801-811, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-31402375

RESUMO

Brain aging is highly variable and represents a challenge to delimit aging from disease processes. Moreover, genetic factors may influence both aging and disease. Here we focused on this issue and investigated effects of multiple genetic loci previously identified to be associated with late-onset Alzheimer's disease (AD) on brain structure of older adults from a population sample. We calculated a genetic risk score (GRS) using genome-wide significant single-nucleotide polymorphisms from genome-wide association studies of AD and tested its effect on cortical thickness (CT). We observed a common pattern of cortical thinning (right inferior frontal, left posterior temporal, medial occipital cortex). To identify CT changes by specific biological processes, we subdivided the GRS effect according to AD-associated pathways and performed follow-up analyses. The common pattern from the main analysis was further differentiated by pathway-specific effects yielding a more bilateral pattern. Further findings were located in the superior parietal and mid/anterior cingulate regions representing 2 unique pathway-specific patterns. All patterns, except the superior parietal pattern, were influenced by apolipoprotein E. Our step-wise approach revealed atrophy patterns that partially resembled imaging findings in early stages of AD. Our study provides evidence that genetic burden for AD contributes to structural brain variability in normal aging.

17.
Melanoma Res ; 30(2): 166-172, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31626034

RESUMO

Uveal melanoma is a life-threatening disease for which data on germline predisposition are essentially limited to mutations in the BAP1 gene. Many risk factors are shared between uveal melanoma and cutaneous melanoma, and these include fair skin color and light eye color. We carried out a genome-wide association study on 590 uveal melanoma patients and 5199 controls. Using a P-value limit of 10 we identified 11 loci with related odds ratios for the risk alleles ranging from 1.32 to 1.78. The smallest P-value in the overall analysis reached 1.07 × 10 for rs3759710 at 14q32.11, which is intronic to TDP1 (tyrosyl-DNA phosphodiesterase 1). This locus emerged as a genome-wide significant association for uveal melanoma clinical subtypes with any chromosomal aberrations (P = 10) and presence of epithelioid cells (P = 10). TDP1 is a DNA repair enzyme capable of repairing many types of DNA damage, including oxidative DNA lesions which may be relevant for uveal melanoma. We additionally wanted to replicate the previous candidate locus for uveal melanoma at chromosome 5p15.33 intronic to the CLPTM1L gene. Our analysis gave an odds ratio of 1.23 (95% confidence interval: 1.09-1.38; P = 0.0008) for the C allele of rs421284 and 1.21 (95% confidence interval: 1.07-1.36; P = 0.002) for the C allele of rs452932. Our data thus replicated the association of uveal melanoma with the CLPTM1L locus. Our data on TDP1 offer an attractive model positing that oxidative damage in pigmented tissue may be an initiation event in uveal melanoma and the level of damage may be regulated by the degree and type of iris pigmentation.

19.
Psychiatr Genet ; 30(1): 34-38, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31568069

RESUMO

Studying the relationship between mental illnesses and their environmental and genetic risk factors in low-income countries holds excellent promises. These studies will improve our understanding of how risk factors identified predominantly in high-income countries also apply to other settings and will identify new, sometimes population-specific risk factors. Here we report the successful completion of two intertwined pilot studies on khat abuse, trauma, and psychosis at the Gilgel Gibe Field Research Center in Ethiopia. We found that the Gilgel Gibe Field Research Center offers a unique opportunity to collect well-characterized samples for mental health research and to perform genetic studies that, at this scale, have not been undertaken in Ethiopia yet. We also supported service development, education, and research for strengthening the professional profile of psychiatry at the site.

20.
Clin Epigenetics ; 11(1): 195, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31843015

RESUMO

BACKGROUND: Trisomy 21 (T21) is associated with intellectual disability that ranges from mild to profound with an average intellectual quotient of around 50. Furthermore, T21 patients have a high risk of developing Alzheimer's disease (AD) early in life, characterized by the presence of senile plaques of amyloid protein and neurofibrillary tangles, leading to neuronal loss and cognitive decline. We postulate that epigenetic factors contribute to the observed variability in intellectual disability, as well as at the level of neurodegeneration seen in T21 individuals. MATERIALS AND METHODS: A genome-wide DNA methylation study was performed using Illumina Infinium® MethylationEPIC BeadChips on whole blood DNA of 3 male T21 patients with low IQ, 8 T21 patients with high IQ (4 males and 4 females), and 21 age- and sex-matched control samples (12 males and 9 females) in order to determine whether DNA methylation alterations could help explain variation in cognitive impairment between individuals with T21. In view of the increased risk of developing AD in T21 individuals, we additionally investigated the T21-associated sites in published blood DNA methylation data from the AgeCoDe cohort (German study on Ageing, Cognition, and Dementia). AgeCoDe represents a prospective longitudinal study including non-demented individuals at baseline of which a part develops AD dementia at follow-up. RESULTS: Two thousand seven hundred sixteen differentially methylated sites and regions discriminating T21 and healthy individuals were identified. In the T21 high and low IQ comparison, a single CpG located in the promoter of PELI1 was differentially methylated after multiple testing adjustment. For the same contrast, 69 differentially methylated regions were identified. Performing a targeted association analysis for the significant T21-associated CpG sites in the AgeCoDe cohort, we found that 9 showed significant methylation differences related to AD dementia, including one in the ADAM10 gene. This gene has previously been shown to play a role in the prevention of amyloid plaque formation in the brain. CONCLUSION: The differentially methylated regions may help understand the interaction between methylation alterations and cognitive function. In addition, ADAM10 might be a valuable blood-based biomarker for at least the early detection of AD.


Assuntos
Proteína ADAM10/genética , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Metilação de DNA , Síndrome de Down/genética , Epigenômica/métodos , Proteínas de Membrana/genética , Adulto , Doença de Alzheimer/diagnóstico , Cognição , Diagnóstico Precoce , Epigênese Genética , Feminino , Estudo de Associação Genômica Ampla , Alemanha , Humanos , Estudos Longitudinais , Masculino , Estudos Prospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA