Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32479722

RESUMO

The chromophores responsible for light absorption in atmospheric brown carbon (BrC) are not well characterized, which hinders our understanding of BrC chemistry, the links with optical properties, and accurate model representations of BrC to global climate and atmospheric oxidative capacity. In this study, the light absorption properties and chromophore composition of three BrC fractions of different polarities were characterized for urban aerosol collected in Xi'an and Beijing in winter 2013-2014. These three BrC fractions show large differences in light absorption and chromophore composition, but the chromophores responsible for light absorption are similar in Xi'an and Beijing. Water-insoluble BrC (WI-BrC) fraction dominates the total BrC absorption at 365 nm in both Xi'an (51 ± 5%) and Beijing (62 ± 13%), followed by a humic-like fraction (HULIS-BrC) and high-polarity water-soluble BrC. The major chromophores identified in HULIS-BrC are nitrophenols and carbonyl oxygenated polycyclic aromatic hydrocarbons (OPAHs) with 2-3 aromatic rings (in total 18 species), accounting for 10% and 14% of the light absorption of HULIS-BrC at 365 nm in Xi'an and Beijing, respectively. In comparison, the major chromophores identified in WI-BrC are PAHs and OPAHs with 4-6 aromatic rings (in total 16 species), contributing 6% and 8% of the light absorption of WI-BrC at 365 nm in Xi'an and Beijing, respectively.

2.
Sci Total Environ ; 717: 137190, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062279

RESUMO

Sulfate and nitrate from secondary reactions remain as the most abundant inorganic species in atmospheric particle matter (PM). Their formation is initiated by oxidation (either in gas phase or particle phase), followed by neutralization reaction primarily by NH3, or by other alkaline species such as alkaline metal ions if available. The different roles of NH3 and metal ions in neutralizing H2SO4 or HNO3, however, are seldom investigated. Here we conducted semi-continuous measurements of SO42-, NO3-, NH4+, and their gaseous precursors, as well as alkaline metal ions (Na+, K+, Ca2+, and Mg2+) in wintertime Beijing. Analysis of aerosol acidity (estimated from a thermodynamic model) indicated that preferable sulfate formation was related to low pH conditions, while high pH conditions promote nitrate formation. Data in different mass fraction ranges of alkaline metal ions showed that in some ranges the role of NH3 was replaced by alkaline metal ions in the neutralization reaction of H2SO4 and HNO3 to form particulate SO42- and NO3-. The relationships between mass fractions of SO42- and NO3- in those ranges of different alkaline metal ion content also suggested that alkaline metal ions participate in the competing neutralization reaction of sulfate and nitrate. The implication of the current study is that in some regions the chemistry to incorporate sulfur and nitrogen into particle phase might be largely affected by desert/fugitive dust and sea salt, besides NH3. This implication is particularly relevant in coastal China and those areas with strong influence of dust storm in the North China Plain (NCP), both of which host a number of megacities with deteriorating air quality.

3.
Eur Heart J ; 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31715629

RESUMO

AIMS: Electronic (e)-cigarettes have been marketed as a 'healthy' alternative to traditional combustible cigarettes and as an effective method of smoking cessation. There are, however, a paucity of data to support these claims. In fact, e-cigarettes are implicated in endothelial dysfunction and oxidative stress in the vasculature and the lungs. The mechanisms underlying these side effects remain unclear. Here, we investigated the effects of e-cigarette vapour on vascular function in smokers and experimental animals to determine the underlying mechanisms. METHODS AND RESULTS: Acute e-cigarette smoking produced a marked impairment of endothelial function in chronic smokers determined by flow-mediated dilation. In mice, e-cigarette vapour without nicotine had more detrimental effects on endothelial function, markers of oxidative stress, inflammation, and lipid peroxidation than vapour containing nicotine. These effects of e-cigarette vapour were largely absent in mice lacking phagocytic NADPH oxidase (NOX-2) or upon treatment with the endothelin receptor blocker macitentan or the FOXO3 activator bepridil. We also established that the e-cigarette product acrolein, a reactive aldehyde, recapitulated many of the NOX-2-dependent effects of e-cigarette vapour using in vitro blood vessel incubation. CONCLUSIONS: E-cigarette vapour exposure increases vascular, cerebral, and pulmonary oxidative stress via a NOX-2-dependent mechanism. Our study identifies the toxic aldehyde acrolein as a key mediator of the observed adverse vascular consequences. Thus, e-cigarettes have the potential to induce marked adverse cardiovascular, pulmonary, and cerebrovascular consequences. Since e-cigarette use is increasing, particularly amongst youth, our data suggest that aggressive steps are warranted to limit their health risks.

4.
Environ Sci Technol ; 53(21): 12506-12518, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31536707

RESUMO

Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities. By electron paramagnetic resonance and mass spectrometric investigations, we found that the relative abundance of HOMs, especially the dimeric and low-volatility types, in ambient fine PM was positively correlated with the formation of radicals in aqueous PM extracts. SOA from photooxidation of isoprene, ozonolysis of α- and ß-pinene, and fine PM from tropical (central Amazon) and boreal (Hyytiälä, Finland) forests exhibited a higher HOM abundance and radical yield than SOA from photooxidation of naphthalene and fine PM from urban sites (Beijing, Guangzhou, Mainz, Shanghai, and Xi'an), confirming that HOMs are important constituents of biogenic SOA to generate radicals. Our study provides new insights into the chemical relationship of HOM abundance, composition, and sources with the yield of radicals by laboratory and ambient aerosols, enabling better quantification of the component-specific contribution of source- or site-specific fine PM to its climate and health effects.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Pequim , China , Finlândia
5.
Environ Sci Technol ; 53(11): 6192-6202, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31083926

RESUMO

Organosulfates (OSs) have been observed as substantial constituents of atmospheric organic aerosol (OA) in a wide range of environments; however, the chemical composition, sources, and formation mechanism of OSs are still not well understood. In this study, we first created an "OS precursor map" based on the elemental composition of previous OS chamber experiments. Then, according to this "OS precursor map", we estimated the possible sources and molecular structures of OSs in atmospheric PM2.5 (particles with aerodynamic diameter ≤ 2.5 µm) samples, which were collected in urban areas of Beijing (China) and Mainz (Germany) and analyzed by ultrahigh-performance liquid chromatography (UHPLC) coupled with an Orbitrap mass spectrometer. On the basis of the "OS precursor map", together with the polarity information provided by UHPLC, OSs in Mainz samples are suggested to be mainly derived from isoprene/glyoxal or other unknown small polar organic compounds, while OSs in Beijing samples were generated from both isoprene/glyoxal and anthropogenic sources (e.g., long-chain alkanes and aromatics). The nitrooxy-OSs in the clean aerosol samples were mainly derived from monoterpenes, while much fewer monoterpene-derived nitrooxy-OSs were obtained in the polluted aerosol samples, showing that nitrooxy-OS formation is affected by different precursors in clean and polluted air conditions.


Assuntos
Poluentes Atmosféricos , Sulfatos , Aerossóis , Pequim , China , Monitoramento Ambiental , Alemanha , Espectrometria de Massas
6.
Biochim Biophys Acta Mol Cell Res ; 1866(6): 978-991, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30857869

RESUMO

Extracellular amino acid (AA) withdrawal/restriction invokes an integrated stress response (ISR) that induces global suppression of protein synthesis whilst allowing transcription and translation of a select group of genes, whose protein products facilitate cellular adaptation to AA insufficiency. Transcriptional induction of the System A/SNAT2 AA transporter represents a classic adaptation response and crucially depends upon activation of the General Control Nonderepressible-2 kinase/Activating transcription factor 4 (GCN2/ATF4) pathway. However, the ISR may also include additional signalling inputs operating in conjunction or independently of GCN2/ATF4 to upregulate SNAT2. Herein, we show that whilst pharmacological inhibition of MEK-ERK, mTORC1 and p38 MAP kinase signalling has no detectable effect on System A upregulation, inhibitors targeting GSK3 (e.g. SB415286) caused significant repression of the SNAT2 adaptation response. Strikingly, the effects of SB415286 persist in cells in which GSK3α/ß have been stably silenced indicating an off-target effect. We show that SB415286 can also inhibit cyclin-dependent kinases (CDK) and that roscovitine and flavopiridol (two pan CDK inhibitors) are effective repressors of the SNAT2 adaptive response. In particular, our work reveals that CDK7 activity is upregulated in AA-deprived cells in a GCN-2-dependent manner and that a potent and selective CDK7 inhibitor, THZ-1, not only attenuates the increase in ATF4 expression but blocks System A adaptation. Importantly, the inhibitory effects of THZ-1 on System A adaptation are mitigated in cells expressing a doxycycline-inducible drug-resistant form of CDK7. Our data identify CDK7 as a novel component of the ISR regulating System A adaptation in response to AA insufficiency.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Aminoácidos/deficiência , Quinases Ciclina-Dependentes/metabolismo , Estresse Fisiológico , Fator 4 Ativador da Transcrição/metabolismo , Aminofenóis/farmacologia , Animais , Linhagem Celular , Flavonoides/farmacologia , Células HEK293 , Células HeLa , Humanos , Maleimidas/farmacologia , Fenilenodiaminas/farmacologia , Piperidinas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/farmacologia , Ratos , Roscovitina/farmacologia
7.
Anal Chem ; 90(15): 8816-8823, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29961316

RESUMO

The accurate and precise mass spectrometric measurement of organic compounds in atmospheric aerosol particles is a challenging task that requires analytical developments and adaptations of existing techniques for the atmospheric application. Here we describe the development and characterization of an atmospheric pressure chemical ionization Orbitrap mass spectrometer (APCI-Orbitrap-MS) for the measurement of organic aerosol in real time. APCI is a well-known ionization technique, featuring minimal fragmentation and matrix dependencies, and allows rapid alternation between the positive and negative ionization mode. As a proof of principle, we report ambient organic aerosol composition in real-time, with alternating ionization, high mass resolution ( R = 140 000) and accuracy (<2 ppm). The instrument was calibrated in the negative ion mode using 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) model aerosol. We obtain a detection limit of 1.3 ng/m3. Based on the performed calibration using MBTCA particles, the ambient concentration of MBTCA in the particle phase measured in an urban area in Mainz, Germany, ranged between 10 and 80 ng/m3. For the first time, we apply a nontarget screening approach on real-time data, showing molecular variability between ambient day- and nighttime aerosol composition. The detected compounds were grouped in the night- and daytime and analyzed by ultrahigh-resolution MS (UHRMS) visualization methods. Among several prevalent biogenic secondary organic aerosol (BSOA) markers, 24 organic mononitrates and one organic dinitrate were detected. We further estimate that, on average, organic nitrates contribute to 5% and 14% of the measured particulate organic aerosol at day and night, respectively.

8.
Environ Sci Technol ; 52(12): 6825-6833, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29799735

RESUMO

Light-absorbing organic carbon (i.e., brown carbon or BrC) in the atmospheric aerosol has significant contribution to light absorption and radiative forcing. However, the link between BrC optical properties and chemical composition remains poorly constrained. In this study, we combine spectrophotometric measurements and chemical analyses of BrC samples collected from July 2008 to June 2009 in urban Xi'an, Northwest China. Elevated BrC was observed in winter (5 times higher than in summer), largely due to increased emissions from wintertime domestic biomass burning. The light absorption coefficient of methanol-soluble BrC at 365 nm (on average approximately twice that of water-soluble BrC) was found to correlate strongly with both parent polycyclic aromatic hydrocarbons (parent-PAHs, 27 species) and their carbonyl oxygenated derivatives (carbonyl-OPAHs, 15 species) in all seasons ( r2 > 0.61). These measured parent-PAHs and carbonyl-OPAHs account for on average ∼1.7% of the overall absorption of methanol-soluble BrC, about 5 times higher than their mass fraction in total organic carbon (OC, ∼0.35%). The fractional solar absorption by BrC relative to element carbon (EC) in the ultraviolet range (300-400 nm) is significant during winter (42 ± 18% for water-soluble BrC and 76 ± 29% for methanol-soluble BrC), which may greatly affect the radiative balance and tropospheric photochemistry and therefore the climate and air quality.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Aerossóis , Carbono , China
9.
Front Pharmacol ; 9: 63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467657

RESUMO

The SNAT2 (SLC38A2) System A amino acid transporter mediates Na+-coupled cellular uptake of small neutral α-amino acids (AAs) and is extensively regulated in response to humoral and nutritional cues. Understanding the basis of such regulation is important given that AA uptake via SNAT2 has been linked to activation of mTORC1; a major controller of many important cellular processes including, for example, mRNA translation, lipid synthesis, and autophagy and whose dysregulation has been implicated in the development of cancer and conditions such as obesity and type 2 diabetes. Extracellular AA withdrawal induces an adaptive upregulation of SNAT2 gene transcription and SNAT2 protein stability but, as yet, the sensing mechanism(s) that initiate this response remain poorly understood although interactions between SNAT2 and its substrates may play a vital role. Herein, we have explored how changes in substrate (AA and Na+) availability impact upon the adaptive regulation of SNAT2 in HeLa cells. We show that while AA deprivation induces SNAT2 gene expression, this induction was not apparent if extracellular Na+ was removed during the AA withdrawal period. Furthermore, we show that the increase in SNAT2 protein stability associated with AA withdrawal is selectively repressed by provision of SNAT2 AA substrates (N-methylaminoisobutyric acid and glutamine), but not non-substrates. This stabilization and substrate-induced repression were critically dependent upon the cytoplasmic N-terminal tail of SNAT2 (containing lysyl residues which are putative targets of the ubiquitin-proteasome system), because "grafting" this tail onto SNAT5, a related SLC38 family member that does not exhibit adaptive regulation, confers substrate-induced changes in stability of the SNAT2-5 chimeric transporter. In contrast, expression of SNAT2 in which the N-terminal lysyl residues were mutated to alanine rendered the transporter stable and insensitive to substrate-induced changes in protein stability. Intriguingly, SNAT2 protein stability was dramatically reduced in the absence of extracellular Na+ irrespective of whether substrate AAs were present or absent. Our findings indicate that the presence of extracellular Na+ (and potentially its binding to SNAT2) may be crucial for not only sensing SNAT2 AA occupancy and consequently for initiating the adaptive response under AA insufficient conditions, but for enabling substrate-induced changes in SNAT2 protein stability.

10.
Sci Rep ; 7(1): 15760, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150676

RESUMO

In recent years, severe haze events often occurred in China, causing serious environmental problems. The mechanisms responsible for the haze formation, however, are still not well understood, hindering the forecast and mitigation of haze pollution. Our study of the 2012-13 winter haze events in Beijing shows that atmospheric water vapour plays a critical role in enhancing the heavy haze events. Under weak solar radiation and stagnant moist meteorological conditions in winter, air pollutants and water vapour accumulate in a shallow planetary boundary layer (PBL). A positive feedback cycle is triggered resulting in the formation of heavy haze: (1) the dispersal of water vapour is constrained by the shallow PBL, leading to an increase in relative humidity (RH); (2) the high RH induces an increase of aerosol particle size by enhanced hygroscopic growth and multiphase reactions to increase particle size and mass, which results in (3) further dimming and decrease of PBL height, and thus further depressing of aerosol and water vapour in a very shallow PBL. This positive feedback constitutes a self-amplification mechanism in which water vapour leads to a trapping and massive increase of particulate matter in the near-surface air to which people are exposed with severe health hazards.

11.
Anal Bioanal Chem ; 409(25): 5975-5985, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28852788

RESUMO

Volcanoes release large amounts of reactive trace gases including sulfur and halogen-containing species into the atmosphere. The knowledge of halogen chemistry in volcanic plumes can deliver information about subsurface processes and is relevant for the understanding of the impact of volcanoes on atmospheric chemistry. In this study, a gas diffusion denuder sampling method using 1,3,5-trimethoxybenzene (1,3,5-TMB)-coated glass tubes for the in situ derivatization of reactive halogen species (RHS) was characterized by a series of laboratory experiments. The coating proved to be applicable to collect selectively gaseous bromine species with oxidation states (OS) of +1 or 0 (such as Br2, BrCl, HOBr, BrO, and BrONO2) while being unreactive to HBr (OS -1). The reaction of 1,3,5-TMB with reactive bromine species forms 1-bromo-2,4,6-TMB-other halogens give corresponding derivatives. Solvent elution of the derivatives followed by analysis with GC-MS results in absolute detection limits of a few nanograms for Br2, Cl2, and I2. In 2015, the technique was applied on volcanic gas plumes at Mt. Etna (Italy) measuring reactive bromine mixing ratios between 0.8 and 7.0 ppbv. Total bromine mixing ratios between 4.7 and 27.5 ppbv were derived from alkaline trap samples, simultaneously taken by a Raschig tube and analyzed with IC and ICP-MS. This leads to the first results of the reactive bromine contribution to total bromine in volcanic emissions, spanning over a range between 12% (±1) and 36% (±2). Our finding is in an agreement with previous model studies, which imply values <44% for plume ages <1 min, which is consistent with the assumed plume age at the sampling sites. Graphical abstract Illustration of the measurement procedure for the determination of reactive halogen species in volcanic plumes.

12.
Faraday Discuss ; 200: 59-74, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28598469

RESUMO

Films of biogenic compounds exposed to the atmosphere are ubiquitously found on the surfaces of cloud droplets, aerosol particles, buildings, plants, soils and the ocean. These air/water interfaces host countless amphiphilic compounds concentrated there with respect to in bulk water, leading to a unique chemical environment. Here, photochemical processes at the air/water interface of biofilm-containing solutions were studied, demonstrating abiotic VOC production from authentic biogenic surfactants under ambient conditions. Using a combination of online-APCI-HRMS and PTR-ToF-MS, unsaturated and functionalized VOCs were identified and quantified, giving emission fluxes comparable to previous field and laboratory observations. Interestingly, VOC fluxes increased with the decay of microbial cells in the samples, indicating that cell lysis due to cell death was the main source for surfactants and VOC production. In particular, irradiation of samples containing solely biofilm cells without matrix components exhibited the strongest VOC production upon irradiation. In agreement with previous studies, LC-MS measurements of the liquid phase suggested the presence of fatty acids and known photosensitizers, possibly inducing the observed VOC production via peroxy radical chemistry. Up to now, such VOC emissions were directly accounted to high biological activity in surface waters. However, the results obtained suggest that abiotic photochemistry can lead to similar emissions into the atmosphere, especially in less biologically-active regions. Furthermore, chamber experiments suggest that oxidation (O3/OH radicals) of the photochemically-produced VOCs leads to aerosol formation and growth, possibly affecting atmospheric chemistry and climate-related processes, such as cloud formation or the Earth's radiation budget.


Assuntos
Tensoativos/química , Compostos Orgânicos Voláteis/síntese química , Aerossóis/síntese química , Aerossóis/química , Atmosfera/química , Processos Fotoquímicos , Compostos Orgânicos Voláteis/química
13.
Environ Sci Technol ; 50(20): 10823-10832, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27709898

RESUMO

Aerosol hygroscopic properties were linked to its chemical composition by using complementary online mass spectrometric techniques in a comprehensive chemical characterization study at a rural mountaintop station in central Germany in August 2012. In particular, atmospheric pressure chemical ionization mass spectrometry ((-)APCI-MS) provided measurements of organic acids, organosulfates, and nitrooxy-organosulfates in the particle phase at 1 min time resolution. Offline analysis of filter samples enabled us to determine the molecular composition of signals appearing in the online (-)APCI-MS spectra. Aerosol mass spectrometry (AMS) provided quantitative measurements of total submicrometer organics, nitrate, sulfate, and ammonium. Inorganic sulfate measurements were achieved by semionline ion chromatography and were compared to the AMS total sulfate mass. We found that up to 40% of the total sulfate mass fraction can be covalently bonded to organic molecules. This finding is supported by both on- and offline soft ionization techniques, which confirmed the presence of several organosulfates and nitrooxy-organosulfates in the particle phase. The chemical composition analysis was compared to hygroscopicity measurements derived from a cloud condensation nuclei counter. We observed that the hygroscopicity parameter (κ) that is derived from organic mass fractions determined by AMS measurements may overestimate the observed κ up to 0.2 if a high fraction of sulfate is bonded to organic molecules and little photochemical aging is exhibited.

14.
Environ Sci Technol ; 50(20): 10814-10822, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27709900

RESUMO

Atmospheric oxidation of volatile organic compounds (VOCs) yields a large number of different organic molecules which comprise a wide range of volatility. Depending on their volatility, they can be involved in new particle formation and particle growth, thus affecting the number concentration of cloud condensation nuclei in the atmosphere. Here, we identified oxidation products of VOCs in the particle phase during a field study at a rural mountaintop station in central Germany. We used atmospheric pressure chemical ionization mass spectrometry ((-)APCI-MS) and aerosol mass spectrometry for time-resolved measurements of organic species and of the total organic aerosol (OA) mass in the size range of 0.02-2.5 and 0.05-0.6 µm, respectively. The elemental composition of organic molecules was determined by offline analysis of colocated PM 2.5 filter samples using liquid chromatography coupled to electrospray ionization ultrahigh-resolution mass spectrometry. We found extremely low volatile organic compounds, likely from sesquiterpene oxidation, being the predominant signals in the (-)APCI-MS mass spectrum during new particle formation. Low volatile organic compounds started to dominate the spectrum when the newly formed particles were growing to larger diameters. Furthermore, the APCI-MS mass spectra pattern indicated that the average molecular weight of the OA fraction ranged between 270 and 340 amu, being inversely related to OA mass. Our observations can help further the understanding of which biogenic precursors and which chemical processes drive particle growth after atmospheric new-particle formation.

15.
Anal Bioanal Chem ; 408(23): 6337-48, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27411545

RESUMO

Metaproteomic analysis of air particulate matter provides information about the abundance and properties of bioaerosols in the atmosphere and their influence on climate and public health. We developed and applied efficient methods for the extraction and analysis of proteins from glass fiber filter samples of total, coarse, and fine particulate matter. Size exclusion chromatography was applied to remove matrix components, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied for protein fractionation according to molecular size, followed by in-gel digestion and LC-MS/MS analysis of peptides using a hybrid Quadrupole-Orbitrap MS. Maxquant software and the Swiss-Prot database were used for protein identification. In samples collected at a suburban location in central Europe, we found proteins that originated mainly from plants, fungi, and bacteria, which constitute a major fraction of primary biological aerosol particles (PBAP) in the atmosphere. Allergenic proteins were found in coarse and fine particle samples, and indications for atmospheric degradation of proteins were observed. Graphical abstract Workflow for the metaproteomic analysis of atmospheric aerosol samples.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera/análise , Material Particulado/análise , Proteínas/análise , Espectrometria de Massas em Tandem/métodos , Alérgenos/análise , Proteínas de Bactérias/análise , Cromatografia Líquida de Alta Pressão/métodos , Bases de Dados de Proteínas , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/análise , Proteínas de Plantas/análise , Proteômica
16.
Environ Sci Pollut Res Int ; 23(16): 16025-36, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27146538

RESUMO

Azaarenes (AZAs) are toxicologically relevant organic compounds with physicochemical properties that are significantly different from the well-studied polycyclic aromatic hydrocarbons (PAHs). However, little is known about their concentrations, seasonal variations, fate, and relationship with PAHs in air. This paper reports the temporal variations in the concentrations and composition patterns of AZAs in PM2.5 that was sampled once per 6 days from outdoor air of Xi'an, China from July 2008 to August 2009. The concentrations of the ∑AZAs, quinoline (QUI), benzo[h]quinoline (BQI), and acridine (ACR) in PM2.5 were 213-6441, 185-520, 69-2483, and 10-3544 pg m(-3), respectively. These concentrations were higher than those measured in urban areas of Western Europe. AZA compositional patterns were dominated by BQI and ACR. The high concentration of AZAs, high AZA/related PAH ratio, and the dominance of three-ring AZAs (BQI and ACR) in PM2.5 of Xi'an are all in contrast to observations from Western European and North American cities. This contrast likely reflects differences in coal type and the more intense use of coal in China. The PM2.5-bound concentration of AZA in winter season (W) was higher than during the summer season (S) with W/S ratios of 5.7, 1.4, 4.1, and 13, for ∑AZAs, QUI, BQI, and ACR, respectively. Despite their significantly different physicochemical properties, AZAs were significantly (p < 0.05) positively correlated with their related PAHs and pyrogenic elemental carbon. The changes in AZA concentrations were positively correlated with ambient pressure but negatively correlated with ambient temperature, wind speed, and relative humidity. This trend is similar to that observed for the related PAHs. We conclude that Xi'an and possibly other Chinese cities have higher emission of AZAs into their atmosphere because of the more pronounced use of coal. We also conclude that in spite of differences in physicochemical properties between AZAs and related PAHs, the atmospheric dynamics and relationships with meteorological factors of both compound groups are similar.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Compostos Aza/análise , China , Cidades , Carvão Mineral , Monitoramento Ambiental , Estações do Ano , Vento
17.
J Mass Spectrom ; 51(2): 141-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26889930

RESUMO

Ambient desorption/ionization mass spectrometry (MS) has gained growing interest during the last decade due to its high analytical performance and yet simplicity. Here, one of the recently developed ambient desorption/ionization MS sources, the flowing atmospheric-pressure afterglow (FAPA) source, was investigated in detail regarding background ions and typical ionization patterns in the positive as well as the negative ion mode for a variety of compound classes, comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides and alkaloids. A broad range of signals for adducts and losses was found, besides the usually emphasized detection of quasimolecular ions, i.e. [M + H](+) and [M - H](-) in the positive and the negative mode, respectively. It was found that FAPA-MS is best suited for polar analytes containing nitrogen and/or oxygen functionalities, e.g. carboxylic acids, with low molecular weights and relatively high vapor pressures. In addition, the source was used in proof-of-principle studies, illustrating the capabilities and limitations of the technique: Firstly, traces of cocaine were detected and unambiguously identified on euro banknotes using FAPA ionization in combination with tandem MS, suggesting a correlation between cocaine abundance and age of the banknote. Secondly, FAPA-MS was used for the identification of acidic marker compounds in organic aerosol samples, indicating yet-undiscovered matrix and sample surface effects of ionization pathways in the afterglow region.

18.
Biochem J ; 470(2): 207-21, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26348909

RESUMO

The mammalian or mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) is a ubiquitously expressed multimeric protein kinase complex that integrates nutrient and growth factor signals for the co-ordinated regulation of cellular metabolism and cell growth. Herein, we demonstrate that suppressing the cellular activity of glycogen synthase kinase-3 (GSK3), by use of pharmacological inhibitors or shRNA-mediated gene silencing, results in substantial reduction in amino acid (AA)-regulated mTORC1-directed signalling, as assessed by phosphorylation of multiple downstream mTORC1 targets. We show that GSK3 regulates mTORC1 activity through its ability to phosphorylate the mTOR-associated scaffold protein raptor (regulatory-associated protein of mTOR) on Ser(859). We further demonstrate that either GSK3 inhibition or expression of a S859A mutated raptor leads to reduced interaction between mTOR and raptor and under these circumstances, irrespective of AA availability, there is a consequential loss in phosphorylation of mTOR substrates, such as p70S6K1 (ribosomal S6 kinase 1) and uncoordinated-51-like kinase (ULK1), which results in increased autophagic flux and reduced cellular proliferation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminoácidos/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Autofagia , Linhagem Celular , Proliferação de Células , Inativação Gênica , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/genética , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Dados de Sequência Molecular , Mutação , Fosforilação , RNA Interferente Pequeno/genética , Ratos , Proteína Regulatória Associada a mTOR , Serina/genética , Serina/metabolismo , Transdução de Sinais
19.
Environ Sci Technol ; 49(9): 5571-8, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25861027

RESUMO

Organic compounds contribute to a major fraction of atmospheric aerosols and have significant impacts on climate and human health. However, because of their chemical complexity, their measurement remains a major challenge for analytical instrumentation. Here we present the development and characterization of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source is based on a helium glow discharge plasma, which generates excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and produces mainly intact quasimolecular ions, facilitating the interpretation of the acquired mass spectra. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng m(-3) range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region is presented. In general, the observed compounds are in agreement with previous offline studies; however, the acquisition of chemical information and compound identification is much faster. The results demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis and reveal the potential of this technique to enable new insights into aerosol formation, growth, and transformation in the atmosphere.


Assuntos
Aerossóis/análise , Pressão Atmosférica , Sistemas Computacionais , Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Aerossóis/química , Humanos , Íons , Compostos Orgânicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA