Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 57(90): 11952-11955, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34699581

RESUMO

Stable emissive carbon nanodots were generated in zeolite crystals using near infrared photon irradiation gradually converting the occluded organic template, originally used to synthesize the zeolite crystals, into discrete luminescent species consisting of nano-sized carbogenic fluorophores, as ascertained using Raman microscopy, and steady-state and time-resolved spectroscopic techniques. Photoactivation in a confocal laser fluorescence microscope allows 3D resolved writing of luminescent carbon nanodot patterns inside zeolites providing a cost-effective and non-toxic alternative to previously reported metal-based nanoclusters confined in zeolites, and opens up opportunities in bio-labelling and sensing applications.

2.
ACS Omega ; 6(33): 21276-21283, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34471732

RESUMO

Interest in the human microbiome is growing and has been, for the past decade, leading to new insights into disease etiology and general human biology. Stimulated by these advances and in a parallel trend, new DNA sequencing platforms have been developed, radically expanding the possibilities in microbiome research. While DNA sequencing plays a pivotal role in this field, there are some technological hurdles that are yet to be overcome. Targeting of the 16S rRNA gene with amplicon sequencing, for instance, is frequently used for sample composition profiling due to its short sample-to-result time and low cost, which counterbalance its low resolution (genus to species level). On the other hand, more comprehensive methods, namely, whole-genome sequencing (WGS) and shallow shotgun sequencing, are capable of yielding single-gene- and functional-level resolution at a higher cost and much higher sample processing time. It goes without saying that the existing gap between these two types of approaches still calls for the development of a fast, robust, and low-cost analytical platform. In search of the latter, we investigated the taxonomic resolution of methyltransferase-mediated DNA optical mapping and found that strain-level identification can be achieved with both global and whole-genome analyses as well as using a unique identifier (UI) database. In addition, we demonstrated that UI selection in DNA optical mapping, unlike variable region selection in 16S amplicon sequencing, is not limited to any genomic location, explaining the increase in resolution. This latter aspect was highlighted by SCCmec typing in methicillin-resistant Staphylococcus aureus (MRSA) using a simulated data set. In conclusion, we propose DNA optical mapping as a method that has the potential to be highly complementary to current sequencing platforms.

3.
Biomed Opt Express ; 12(7): 4414-4422, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34457422

RESUMO

We present a modular implementation of structured illumination microscopy (SIM) that is fast, largely self-contained and that can be added onto existing fluorescence microscopes. Our strategy, which we call HIT-SIM, can theoretically deliver well over 50 super-resolved images per second and is readily compatible with existing acquisition software packages. We provide a full technical package consisting of schematics, a list of components and an alignment scheme that provides detailed specifications and assembly instructions. We illustrate the performance of the instrument by imaging optically large samples containing sequence-specifically stained DNA fragments.

4.
ACS Appl Electron Mater ; 3(7): 3023-3033, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34337416

RESUMO

Following the rapid increase of organic metal halide perovskites toward commercial application in thin-film solar cells, inorganic alternatives attracted great interest with their potential of longer device lifetime due to the stability improvement under increased temperatures and moisture ingress. Among them, cesium lead iodide (CsPbI3) has gained significant attention due to similar electronic and optical properties to methylammonium lead iodide (MAPbI3), with a band gap of 1.7 eV, high absorption coefficient, and large diffusion length, while also offering the advantage of being completely inorganic, providing a higher thermal stability and preventing material degradation. On a device level, however, it seems also essential to replace organic transport layers by inorganic counterparts to further prevent degradation. In addition, devices are mostly fabricated by spin coating, limiting their reproducibility and scalability; in this case, exploring all-evaporated devices allows us to improve the quality of the layers and to increase their reproducibility. In this work, we focus on the deposition of CsPbI3 by CsI and PbI2 co-evaporation. We fabricate devices with an all-inorganic, all-evaporated structure, employing NiO and TiO2 as transport layers, and evaluate these devices for both photodetector and solar cell applications. As a photodetector, low leakage current, high external quantum efficiency (EQE) and detectivity, and fast rise and decay times were obtained, while as a solar cell, acceptable efficiencies were achieved. These all-inorganic, all-evaporated devices represent one step forward toward higher stability and reproducibility while enabling large area compatibility and easier integration with other circuitry and, in future, the possible commercialization of perovskite-based technology.

5.
J Am Chem Soc ; 143(34): 13782-13789, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34424689

RESUMO

Expansion microscopy (ExM) enables the nanoscale imaging of ribonucleic acids (RNAs) on a conventional fluorescence microscope, providing information on the intricate patterns of gene expression at (sub)cellular resolution and within spatial context. To extend the use of such strategies, we examined a series of multivalent reagents that allow the labeling and grafting of deoxyribonucleic acid (DNA) oligonucleotide probes in a unified approach. We show that the reagents are directly compatible with third-generation in situ hybridization chain reaction RNA FISH (fluorescence in situ hybridization) techniques while displaying complete retention of the targeted transcripts. Furthermore, we validate and demonstrate that our labeling method is compatible with multicolor staining. Through oligonucleotide-conjugated antibodies, we demonstrate excellent performance in ×4 ExM and ×10 ExM, achieving a resolution of ∼50 nm in ×10 ExM for both pre- and postexpansion labeling strategies. Our results indicate that our multivalent molecules enable the rapid functionalization of DNA oligonucleotides for ExM.

6.
J Am Chem Soc ; 143(28): 10500-10508, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34196547

RESUMO

The technological progress and widespread adoption of all-organic CsPbI3 perovskite devices is hampered by its thermodynamic instability at room temperature. Because of its inherent tolerance toward deep trap formation, there has been no shortage to exploring which dopants can improve the phase stability. While the relative size of the dopant is important, an assessment of the literature suggests that its relative size and impact on crystal volume do not always reveal what will beneficially shift the phase transition temperature. In this perspective, we analyze the changes in crystal symmetry of CsPbI3 perovskite as it transforms from a thermodynamically stable high-temperature cubic (α) structure into its distorted low-temperature tetragonal (ß) and unstable orthorhombic (γ) perovskite structures. Quantified assessment of the symmetry-adapted strains which are introduced due to changes in temperature and composition show that the stability of γ-CsPbI3 is best rationalized from the point of view of crystal symmetry. In particular, improved thermal-phase stability is directly traced to the suppression of spontaneous strain formation and increased crystal symmetry at room temperature.

7.
ACS Nano ; 15(7): 10775-10981, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34137264

RESUMO

Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.

8.
Nat Commun ; 12(1): 2541, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953187

RESUMO

Förster resonance energy transfer (FRET) between fluorescent proteins has become a common platform for designing genetically encoded biosensors. For live cell imaging, the acceptor-to-donor intensity ratio is most commonly used to readout FRET efficiency, which largely depends on the proximity between donor and acceptor. Here, we introduce an anisotropy-based mode of FRET detection (FADED: FRET-induced Angular Displacement Evaluation via Dim donor), which probes for relative orientation rather than proximity alteration. A key element in this technique is suppression of donor bleed-through, which allows measuring purer sensitized acceptor anisotropy. This is achieved by developing Geuda Sapphire, a low-quantum-yield FRET-competent fluorescent protein donor. As a proof of principle, Ca2+ sensors were designed using calmodulin as a sensing domain, showing sigmoidal dose response to Ca2+. By monitoring the anisotropy, a Ca2+ rise in living HeLa cells is observed upon histamine challenging. We conclude that FADED provides a method for quantifying the angular displacement via FRET.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Imagem Óptica/métodos , Anisotropia , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Escherichia coli/genética , Escherichia coli/metabolismo , Células HeLa , Humanos
9.
ACS Appl Mater Interfaces ; 13(11): 13347-13353, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33688719

RESUMO

The d-band center of a catalyst can be applied for the prediction of its catalytic activity, but the application of d-band theory for the electrocatalytic nitrogen reduction reaction (eNRR) has rarely been studied in perovskite materials. In this work, a series of double-perovskite LaCoxNi1-xO3 (LCNO) nanorods (NRs) were synthesized as models, where the d-band centers can be modulated by changing the stoichiometric ratios between Co and Ni elements. Experimentally, the LCNO-III NRs (x = 0.5) attained the highest faradic efficiency and NH3 yield rate among various LCNO NRs. This result matches well with the finding from theoretical calculations that LCNO-III has the most positive d-band center (εd = -0.96 eV vs Fermi level), thus confirming that LCNO-III shows the strongest adsorption ability for N2 molecules (adsorption energy value of -2.01 eV) for the subsequent N2 activation and reduction reactions. Therefore, this work proposes a general rule to adopt for developing novel catalysts (especially perovskite-based catalysts) for substantially increasing the eNRR activity by modulating the corresponding d-band centers.

10.
Pharmaceutics ; 13(2)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673228

RESUMO

Recently, it was proposed that the thiophene ring is capable of promoting mitochondrial accumulation when linked to fluorescent markers. As a noncharged group, thiophene presents several advantages from a synthetic point of view, making it easier to incorporate such a side moiety into different molecules. Herein, we confirm the general applicability of the thiophene group as a mitochondrial carrier for drugs and fluorescent markers based on a new concept of nonprotonable, noncharged transporter. We implemented this concept in a medicinal chemistry application by developing an antitumor, metabolic chimeric drug based on the pyruvate dehydrogenase kinase (PDHK) inhibitor dichloroacetate (DCA). The promising features of the thiophene moiety as a noncharged carrier for targeting mitochondria may represent a starting point for the design of new metabolism-targeting drugs.

11.
Adv Mater ; 33(13): e2007224, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33634503

RESUMO

Controlling grain orientations within polycrystalline all-inorganic halide perovskite solar cells can help increase conversion efficiencies toward their thermodynamic limits; however, the forces governing texture formation are ambiguous. Using synchrotron X-ray diffraction, mesostructure formation within polycrystalline CsPbI2.85 Br0.15 powders as they cool from a high-temperature cubic perovskite (α-phase) is reported. Tetragonal distortions (ß-phase) trigger preferential crystallographic alignment within polycrystalline ensembles, a feature that is suggested here to be coordinated across multiple neighboring grains via interfacial forces that select for certain lattice distortions over others. External anisotropy is then imposed on polycrystalline thin films of orthorhombic (γ-phase) CsPbI3- x Brx perovskite via substrate clamping, revealing two fundamental uniaxial texture formations; i) I-rich films possess orthorhombic-like texture (<100> out-of-plane; <010> and <001> in-plane), while ii) Br-rich films form tetragonal-like texture (<110> out-of-plane; <110> and <001> in-plane). In contrast to relatively uninfluential factors like the choice of substrate, film thickness, and annealing temperature, Br incorporation modifies the γ-CsPbI3- x Brx crystal structure by reducing the orthorhombic lattice distortion (making it more tetragonal-like) and governs the formation of the different, energetically favored textures within polycrystalline thin films.

12.
Phys Chem Chem Phys ; 23(6): 3983-3992, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33554234

RESUMO

Quasi two-dimensional perovskites have attracted great attention for applications in light-emitting devices and photovoltaics due to their robustness and tunable highly efficient photoluminescence (PL). However, the mechanism of intrinsic PL in these materials is still not fully understood. In this work, we have analysed the nature of the different emissive states and the impact of temperature on the emissions in quasi two-dimensional methyl ammonium lead bromide perovskite (q-MPB) and cesium lead bromide perovskite (q-CPB). We have used spatially resolved phase-modulated two-photon photoluminescence (2PPL) and temperature-dependent 2PPL to characterize the emissions. Our results show that at room temperature, the PL from q-MPB is due to the recombination of excitons and free carriers while the PL from q-CPB is due to the recombination of excitons only. Temperature-dependent measurements show that in both materials the linewidth broadening is due to the interactions between the excitons and optical phonons at high temperatures. Comparing the characteristics of the emissions in the two systems, we conclude that q-CPB is better suited for light emitting devices. With a further optimization to reduce the impact on the environment, q-CPB-based LEDs could perform as well as OLEDs.

13.
Nanoscale ; 13(5): 2972-2981, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33508050

RESUMO

Covalent functionalization is one of the most efficient ways to tune the properties of layered materials in a highly controlled manner. However, molecular chemisorption on semiconducting transition metal dichalcogenides remains a delicate task due to the inertness of their surface. Here we perform covalent modification of bulk and single layer molybdenum disulfide (MoS2) using chemical activation of diazonium salts. A high level of control over the grafting density and yield on MoS2 basal plane can be achieved by this approach. Using scanning probe microscopies and X-ray photoelectron spectroscopy we prove the covalent functionalization of MoS2.

14.
ChemSusChem ; 14(1): 306-312, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33210784

RESUMO

Visible light-driven photocatalytic reduction of protons to H2 is considered a promising way of solar-to-chemical energy conversion. Effective transfer of the photogenerated electrons and holes to the surface of the photocatalyst by minimizing their recombination is essential for achieving a high photocatalytic activity. In general, a sacrificial electron donor is used as a hole scavenger to remove photogenerated holes from the valence band for the continuation of the photocatalytic hydrogen (H2 ) evolution process. Here, for the first time, the hole-transfer dynamics from Pt-loaded sol-gel-prepared graphitic carbon nitride (Pt-sg-CN) photocatalyst were investigated using different adsorbed hole acceptors along with a sacrificial agent (ascorbic acid). A significant increment (4.84 times) in H2 production was achieved by employing phenothiazine (PTZ) as the hole acceptor with continuous H2 production for 3 days. A detailed charge-transfer dynamic of the photocatalytic process in the presence of the hole acceptors was examined by time-resolved photoluminescence and in situ electron paramagnetic resonance studies.

15.
ACS Omega ; 5(38): 24495-24503, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33015466

RESUMO

CsPbBr3 perovskite-based composites so far have been synthesized by postdeposition of CsPbBr3 on a parent material. However, in situ construction offers enhanced surface contact, better activity, and improved stability. Instead of applying a typical thermal condensation at highly elevated temperatures, we report for the first time CsPb(Br x Cl1-x )3/graphitic-C3N4 (CsPbX3/g-C3N4) composites synthesized by a simple and mild solvothermal route, with enhanced efficacy in visible-light-driven photocatalytic CO2 reduction. The composite exhibited a CO production rate of 28.5 µmol g-1 h-1 at an optimized loading amount of g-C3N4. This rate is about five times those of pure g-C3N4 and CsPbBr3. This work reports a new in situ approach for constructing perovskite-based heterostructure photocatalysts with enhanced light-harvesting ability and improved solar energy conversion efficiency.

16.
Biophys J ; 119(10): 2127-2137, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33096081

RESUMO

Asymmetric dimer formation of epidermal growth factor receptor (EGFR) is crucial for EGF-induced receptor activation. Even though autophosphorylation is important for activation, its role remains elusive in the context of regulating dimers. In this study, employing overlapping time series analysis to raster image correlation spectroscopy (RICS), we observed time-dependent transient dynamics of EGFR dimerization and found EGFR kinase activity to be essential for dimerization. As a result of which, we hypothesized that phosphorylation could influence dimerization. Evaluating this point, we observed that one of the tyrosine residues (Y954) located in the C-terminal lobe of the activator kinase domain was important to potentiate dimerization. Functional imaging to monitor Ca2+ and ERK signals revealed a significant role of Y954 in influencing downstream signaling cascade. Crucial for stabilization of EGFR asymmetric dimer is a "latch" formed between kinase domains of the binding partners. Because Y954 is positioned adjacent to the latch binding region on the kinase domain, we propose that phosphorylation strengthened the latch interaction. On the contrary, we identified that threonine phosphorylation (T669) in the latch domain negatively regulated EGFR dimerization and the downstream signals. Overall, we have delineated the previously anonymous role of phosphorylation at the latch interface of kinase domains in regulating EGFR dimerization.


Assuntos
Receptores ErbB , Transdução de Sinais , Dimerização , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Fosforilação , Tirosina/metabolismo
17.
Nanoscale ; 12(42): 21951, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33112320

RESUMO

Correction for 'FRET-based intracellular investigation of nanoprodrugs toward highly efficient anticancer drug delivery' by Farsai Taemaitree et al., Nanoscale, 2020, 12, 16710-16715, DOI: 10.1039/D0NR04910G.

18.
ACS Omega ; 5(37): 23931-23939, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32984713

RESUMO

Mapping the spatial and temporal heterogeneities in miscible polymer blends is critical for understanding and further improving their material properties. However, a complete picture on the heterogeneous dynamics is often obscured in ensemble measurements. Herein, the spatial and temporal heterogeneities in fully miscible polystyrene/oligostyrene blend films are investigated by monitoring the rotational diffusion of embedded individual probe molecules using defocused wide-field fluorescence microscopy. In the same blend film, three significantly different types of dynamical behaviors (referred to as modes) of the probe molecules can be observed at the same time, namely, immobile, continuously rotating, and intermittently rotating probe molecules. This reveals a prominent spatial heterogeneity in local dynamics at the nanometer scale. In addition to that, temporal heterogeneity is uncovered by the nonexponential characteristic of the rotational autocorrelation functions of single-molecule probes. Moreover, the occurrence probabilities of these different modes strongly depend on the polystyrene: oligostyrene ratios in the blend films. Remarkably, some probe molecules switch between the continuous and intermittent rotational modes at elevated temperature, indicating a possible alteration in local dynamics that is triggered by the dynamic heterogeneity in the blends. Although some of these findings can be discussed by the self-concentration model and the results provided by ensemble averaging techniques (e.g., dielectric spectroscopy), there are implications that go beyond current models of blend dynamics.

19.
Opt Express ; 28(19): 27727-27735, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988060

RESUMO

Laser trapping at an interface is a unique platform for aligning and assembling nanomaterials outside the focal spot. In our previous studies, Au nanoparticles form a dynamically evolved assembly outside the focus, leading to the formation of an antenna-like structure with their fluctuating swarms. Herein, we unravel the role of surface plasmon resonance on the swarming phenomena by tuning the trapping laser wavelength concerning the dipole mode for Au nanoparticles of different sizes. We clearly show that the swarm is formed when the laser wavelength is near to the resonance peak of the dipole mode together with an increase in the swarming area. The interpretation is well supported by the scattering spectra and the spatial light scattering profiles from single nanoparticle simulations. These findings indicate that whether the first trapped particle is resonant with trapping laser or not essentially determines the evolution of the swarming.

20.
Opt Express ; 28(19): 28656-28671, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988132

RESUMO

Multifocal plane microscopy allows for capturing images at different focal planes simultaneously. Using a proprietary prism which splits the emitted light into paths of different lengths, images at 8 different focal depths were obtained, covering a volume of 50x50x4 µm3. The position of single emitters was retrieved using a phasor-based approach across the different imaging planes, with better than 10 nm precision in the axial direction. We validated the accuracy of this approach by tracking fluorescent beads in 3D to calculate water viscosity. The fast acquisition rate (>100 fps) also enabled us to follow the capturing of 0.2 µm fluorescent beads into an optical trap.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...