Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 25(53): 12412-12422, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31271482

RESUMO

Over the years, we developed highly selective fluorescent probes for K+ in water, which show K+ -induced fluorescence intensity enhancements, lifetime changes, or a ratiometric behavior at two emission wavelengths (cf. Scheme 1, K1-K4). In this paper, we introduce selective fluorescent probes for Na+ in water, which also show Na+ induced signal changes, which are analyzed by diverse fluorescence techniques. Initially, we synthesized the fluorescent probes 2, 4, 5, 6 and 10 for a fluorescence analysis by intensity enhancements at one wavelength by varying the Na+ responsive ionophore unit and the fluorophore moiety to adjust different Kd values for an intra- or extracellular Na+ analysis. Thus, we found that 2, 4 and 5 are Na+ selective fluorescent tools, which are able to measure physiologically important Na+ levels at wavelengths higher than 500 nm. Secondly, we developed the fluorescent probes 7 and 8 to analyze precise Na+ levels by fluorescence lifetime changes. Herein, only 8 (Kd =106 mm) is a capable fluorescent tool to measure Na+ levels in blood samples by lifetime changes. Finally, the fluorescent probe 9 was designed to show a Na+ induced ratiometric fluorescence behavior at two emission wavelengths. As desired, 9 (Kd =78 mm) showed a ratiometric fluorescence response towards Na+ ions and is a suitable tool to measure physiologically relevant Na+ levels by the intensity change of two emission wavelengths at 404 nm and 492 nm.

2.
Chemphyschem ; 20(10): 1311-1315, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31017710

RESUMO

Quantum sieving of hydrogen isotopes is experimentally studied in isostructural hexagonal metal-organic frameworks having 1-D channels, named IFP-1, -3, -4 and -7. Inside the channels, different molecules or atoms restrict the channel diameter periodically with apertures larger (4.2 Šfor IFP-1, 3.1 Šfor IFP-3) and smaller (2.1 Šfor IFP-7, 1.7 Šfor IFP-4) than the kinetic diameter of hydrogen isotopes. From a geometrical point of view, no gas should penetrate into IFP-7 and IFP-4, but due to the thermally induced flexibility, so-called gate-opening effect of the apertures, penetration becomes possible with increasing temperature. Thermal desorption spectroscopy (TDS) measurements with pure H2 or D2 have been applied to study isotope adsorption. Further TDS experiments after exposure to an equimolar H2 /D2 mixture allow to determine directly the selectivity of isotope separation by quantum sieving. IFP-7 shows a very low selectivity not higher than S=2. The selectivity of the materials with the smallest pore aperture IFP-4 has a constant value of S≈2 for different exposure times and pressures, which can be explained by the 1-D channel structure. Due to the relatively small cavities between the apertures of IFP-4 and IFP-7, molecules in the channels cannot pass each other, which leads to a single-file filling. Therefore, no time dependence is observed, since the quantum sieving effect occurs only at the outermost pore aperture, resulting in a low separation selectivity.

3.
Chemistry ; 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29863303

RESUMO

This work presents two molecular fluorescent probes 1 and 2 for the selective determination of physiologically relevant K+ levels in water based on a highly K+ /Na+ selective building block, the o-(2-methoxyethoxy)phenylaza-18-crown-6 lariat ether unit. Fluorescent probe 1 showed a high K+ -induced fluorescence enhancement (FE) by a factor of 7.7 of the anthracenic emission and a dissociation constant (Kd ) value of 38 mm in water. Further, for 2+K+ , we observed a dual emission behavior at 405 and 505 nm. K+ increases the fluorescence intensity of 2 at 405 nm by a factor of approximately 4.6 and K+ decreases the fluorescence intensity at 505 nm by a factor of about 4.8. Fluorescent probe 2+K+ exhibited a Kd value of approximately 8 mm in Na+ -free solutions and in combined K+ /Na+ solution a similar Kd value of about 9 mm was found, reflecting the high K+ /Na+ selectivity of 2 in water. Therefore, 2 is a promising fluorescent tool to measure ratiometrically and selectively physiologically relevant K+ levels.

4.
J Mass Spectrom ; 53(5): 408-418, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29453784

RESUMO

The complex formation of the following diazaperylene ligands (L) 1,12-diazaperylene 1, 1,1'-bisisoquinoline 2, 2,11-disubstituted 1,12-diazaperylenes (alkyl = methyl, ethyl, isopropyl, 3, 5, 7), 3,3'-disubstituted 1,1'-bisisoquinoline (alkyl = methyl, ethyl, isopropyl, 4, 6, 8 and with R = phenyl, 11 and with pyridine 12), and the 5,8-dimethoxy-substituted diazaperylene 9, 6,6'-dimethoxy-substituted bisisoquinoline 10 with AgBF4 was investigated. Collision-induced dissociation measurements were used to evaluate the relative stabilities of the ligands themselves and for the [1:1]+ complexes as well as for the homoleptic and heteroleptic silver [1:2]+ complexes in the gas phase. This method is very useful in rapid screening of the stabilities of new complexes in the gas phase. The influence of the spatial arrangement of the ligands and the type of substituents employed for the complexation were examined. The effect of the preorganization of the diazaperylene on the threshold activation voltages and thus of the relative binding energies of the different complexes are discussed. Density functional theory calculations were used to calculate the optimized structures of the silver complexes and compared with the stabilities of the complexes in the gas phase for the first time.

5.
Chemistry ; 23(62): 15583-15587, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28869692

RESUMO

The homodinuclear ruthenium(II) complex [{Ru(l-N4 Me2 )}2 (µ-tape)](PF6 )4 {[1](PF6 )4 } (l-N4 Me2 =N,N'-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane, tape=1,6,7,12-tetraazaperylene) can store one or two electrons in the energetically low-lying π* orbital of the bridging ligand tape. The corresponding singly and doubly reduced complexes [{Ru(l-N4 Me2 )}2 (µ-tape.- )](PF6 )3 {[2](PF6 )3 } and [{Ru(l-N4 Me2 )}2 (µ-tape2- )](PF6 )2 {[3](PF6 )2 }, respectively, were electrochemically generated, successfully isolated and fully characterized by single-crystal X-ray crystallography, spectroscopic methods and magnetic susceptibility measurements. The singly reduced complex [2](PF6 )3 contains the π-radical tape.- and the doubly reduced [3](PF6 )2 the diamagnetic dianion tape2- as bridging ligand, respectively. Nucleophilic aromatic substitution at the bridging tape in [1]4+ by two sulfite units gave the complex [{Ru(l-N4 Me2 )}2 {µ-tape-(SO3 )2 }]2+ ([4]2+ ). Complex dication [4]2+ was exploited as a redox mediator between an anaerobic homogenous reaction solution of an enzyme system (sulfite/sulfite oxidase) and the electrode via participation of the low-energy π*-orbital of the disulfonato-substituted bridging ligand tape-(SO3 )22- (Ered1 =-0.1 V versus Ag/AgCl/1 m KCl in water).

6.
Chemistry ; 23(68): 17186-17190, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28895214

RESUMO

The new K+ -selective fluorescent probes 1 and 2 were obtained by CuI -catalyzed 1,3-dipolar azide alkyne cycloaddition (CuAAC) reactions of an alkyne-substituted [1,3]dioxolo[4,5-f][1,3]benzodioxole (DBD) ester fluorophore with azido-functionalized N-phenylaza-18-crown-6 ether and N-(o-isopropoxy) phenylaza-18-crown-6 ether, respectively. Probes 1 and 2 allow the detection of K+ in the presence of Na+ in water by fluorescence enhancement (2.2 for 1 at 2000 mm K+ and 2.5 for 2 at 160 mm K+ ). Fluorescence lifetime measurements in the absence and presence of K+ revealed bi-exponential decay kinetics with similar lifetimes, however with different proportions changing the averaged fluorescence decay times (τf(av) ). For 1 a decrease of τf(av) from 12.4 to 9.3 ns and for 2 an increase from 17.8 to 21.8 ns was observed. Variation of the substituent in ortho position of the aniline unit of the N-phenylaza-18-crown-6 host permits the modulation of the Kd value for a certain K+ concentration. For example, substitution of H in 1 by the isopropoxy group (2) decreased the Kd value from >300 mm to 10 mm. 2 was chosen for studying the efflux of K+ from human red blood cells (RBC). Upon addition of the Ca2+ ionophor ionomycin to a RBC suspension in a buffer containing Ca2+ , the fluorescence of 2 slightly rose within 10 min, however, after 120 min a significant increase was observed.


Assuntos
Corantes Fluorescentes/química , Potássio/química , Cálcio/química , Catálise , Células Cultivadas , Cobre , Éteres de Coroa/química , Reação de Cicloadição , Eritrócitos/química , Eritrócitos/citologia , Eritrócitos/metabolismo , Corantes Fluorescentes/síntese química , Humanos , Ionomicina/química , Íons/química , Cinética , Espectrometria de Fluorescência
7.
Langmuir ; 33(42): 11170-11179, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28793757

RESUMO

Four metal-organic frameworks with similar topology but different chemical environment inside the pore structure, namely, IFP-1, IFP-3, IFP-5, and IFP-7, have been investigated with respect to the separation potential for olefin-paraffin mixtures as well as the influence of the different linkers on adsorption properties using experiments and Monte Carlo simulations. All IFP structures show a higher adsorption of ethane compared to ethene with the exception of IFP-7 which shows no selectivity in breakthrough experiments. For propane/propane separation, all adsorbents show a higher adsorption for the olefin. The experimental results agree quite well with the simulated values except for the IFP-7, which is presumably due to the flexibility of the structure. Moreover, the experimental and simulated isotherms were confirmed with breakthrough experiments that render IFP-1, IFP-3, and IFP-5 as suitable for the purification of ethene from ethane.

8.
Dalton Trans ; 46(14): 4824-4833, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28349137

RESUMO

Microwave heating (MW)-assisted synthesis has been widely applied as an alternative method for the chemical synthesis of organic and inorganic materials. In this work, we report MW-assisted synthesis of three isostructural 3D frameworks with a flexible linker arm of the chelating linker 2-substituted imidazolate-4-amide-5-imidate, named IFP-7-MW (M = Zn, R = OMe), IFP-8-MW (M = Co; R = OMe) and IFP-10-MW (M = Co; R = OEt) (IFP = Imidazolate Framework Potsdam). These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under MW- and also conventional electrical heating (CE)-assisted conditions in DMF. The structure of these materials was determined by IR spectroscopy and powder X-ray diffraction (PXRD) and the identity of the materials synthesized under CE-conditions was established. Materials obtained from MW-heating show many fold enhancement of CO2 and H2 uptake capacities, compared to the analogous CE-heating method based materials. To understand the inner pore-sizes of IFP structures and variations of gas sorptions, we performed positron annihilation lifetime spectroscopy (PALS), which shows that MW-assisted materials have smaller pore sizes than materials synthesized under CE-conditions. The "kinetically controlled" MW-synthesized material has an inherent ability to trap extra linkers, thereby reducing the pore sizes of CE-materials to ultra/micropores. These ultramicropores are responsible for high gas sorption.

9.
Chemistry ; 23(30): 7255-7263, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28195410

RESUMO

There is a tremendous demand for highly Na+ -selective fluoroionophores to monitor the top analyte Na+ in life science. Here, we report a systematic route to develop highly Na+ /K+ selective fluorescent probes. Thus, we synthesized a set of fluoroionophores 1, 3, 4, 5, 8 and 9 (see Scheme ) to investigate the Na+ /K+ selectivity and Na+ - complex stability in CH3 CN and H2 O. These Na+ -probes bear different 15-crown-5 moieties to bind Na+ stronger than K+ . In the set of the diethylaminocoumarin-substituted fluoroionophores 1-5, the following trend of fluorescence quenching 1>3>2>4>5 in CH3 CN was observed. Therefore, the flexibility of the aza-15-crown-5 moieties in 1-4 determines the conjugation of the nitrogen lone pair with the aromatic ring. As a consequence, 1 showed in CH3 CN the highest Na+ -induced fluorescence enhancement (FE) by a factor of 46.5 and a weaker K+ induced FE of 3.7. The Na+ -complex stability of 1-4 in CH3 CN is enhanced in the following order of 2>4>3>1, assuming that the O-atom of the methoxy group in the ortho-position, as shown in 2, strengthened the Na+ -complex formation. Furthermore, we found for the N-(o-methoxyphenyl)aza-15-crown-5 substituted fluoroionophores 2, 8 and 9 in H2 O, an enhanced Na+ -complex stability in the following order 8>2>9 and an increased Na+ /K+ selectivity in the reverse order 9>2>8. Notably, the Na+ -induced FE of 8 (FEF=10.9), 2 (FEF=5.0) and 9 (FEF=2.0) showed a similar trend associated with a decreased K+ -induced FE [8 (FEF=2.7)>2 (FEF=1.5)>9 (FEF=1.1)]. Here, the Na+ -complex stability and Na+ /K+ selectivity is also influenced by the fluorophore moiety. Thus, fluorescent probe 8 (Kd =48 mm) allows high-contrast, sensitive, and selective Na+ measurements over extracellular K+ levels. A higher Na+ /K+ selectivity showed fluorescent probe 9, but also a higher Kd value of 223 mm. Therefore, 9 is a suitable tool to measure Na+ concentrations up to 300 mm at a fluorescence emission of 614 nm.

10.
Chemistry ; 22(20): 6905-13, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27037831

RESUMO

An extended member of the isoreticular family of metal-imidazolate framework structures, IFP-6 (IFP=imidazolate framework Potsdam), based on cadmium metal and an in situ functionalized 2-methylimidazolate-4-amide-5-imidate linker is reported. A porous 3D framework with 1D hexagonal channels with accessible pore windows of 0.52 nm has been synthesized by using an ionic liquid (IL) linker precursor. IFP-6 shows significant gas uptake capacity only for CO2 and CH4 at elevated pressure, whereas it does not adsorb N2 , H2 , and CH4 under atmospheric conditions. IFP-6 is assumed to deteriorate at the outside of the material during the activation process. This closing of the metal-organic framework (MOF) pores is proven by positron annihilation lifetime spectroscopy (PALS), which revealed inherent crystal defects. PALS results support the conservation of the inner pores of IFP-6. IFP-6 has also been successfully loaded with luminescent trivalent lanthanide ions (Ln(III) =Tb, Eu, and Sm) in a bottom-up one-pot reaction through the in situ generation of the linker ligand and in situ incorporation of photoluminescent Ln ions into the constituting network. The results of photoluminescence investigations and powder XRD provide evidence that the Ln ions are not doped as connectivity centers into the frameworks, but are instead located within the pores of the MOFs. Under UV light irradiation, Tb@IFP-6 and Eu@IFP-6 (λexc =365 nm) exhibit observable emission changes to a greenish and reddish color, respectively, as a result of strong Ln 4 f emissions.

11.
Dalton Trans ; 45(13): 5476-83, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26885778

RESUMO

Sixteen new ionic liquids (ILs) with tetraethylammonium, 1-butyl-3-methylimidazolium, 3-methyl-1-octylimidazolium and tetrabutylphosphonium cations paired with 2-substituted 4,5-dicyanoimidazolate anions (substituent at C2 = methyl, trifluoromethyl, pentafluoroethyl, N,N'-dimethyl amino and nitro) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The effects of cation and anion type and structure of the resulting ILs, including several room temperature ionic liquids (RTILs), are reflected in the crystallization, melting points and thermal decomposition of the ILs. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of -22 to -71 °C. We selected one of the newly designed ILs due to its bigger size, compared to the common conventional IL anion and high electron-withdrawing nitrile group leads to an overall stabilization anion that may stabilize the metal nanoparticles. Stable and better separated iron and silver nanoparticles are obtained by the decomposition of corresponding Fe2(CO)9 and AgPF6, respectively, under N2-atmosphere in newly designed nitrile functionalized 4,5-dicyanoimidazolate anion based IL. Very small and uniform size for Fe-nanoparticles of about 1.8 ± 0.6 nm were achieved without any additional stabilizers or capping molecules. Comparatively bigger size of Ag-nanoparticles was obtained through the reduction of AgPF6 by hydrogen gas. Additionally, the AgPF6 precursor was decomposed under microwave irradiation (MWI), fabricating nut-in-shell-like, that is, core-separated-from-shell Ag-nano-structures.

12.
Angew Chem Int Ed Engl ; 55(1): 42-4, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26592361

RESUMO

Seek and destroy: Filtration schemes and self-detoxifying protective fabrics based on the Zr(IV)-containing metal-organic frameworks (MOFs) MOF-808 and UiO-66 doped with LiOtBu have been developed that capture and hydrolytically detoxify simulants of nerve agents and mustard gas. Both MOFs function as highly catalytic elements in these applications.


Assuntos
Substâncias para a Guerra Química/química , Compostos Organometálicos/química , Catálise , Hidrólise , Estrutura Molecular
13.
Chem Asian J ; 11(2): 241-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26473334

RESUMO

A desirable goal is to synthesize easily accessible and highly K(+) /Na(+) -selective fluoroionophores to monitor physiological K(+) levels in vitro and in vivo. Therefore, highly K(+) /Na(+) -selective ionophores have to be developed. Herein, we obtained in a sequence of only four synthetic steps a set of K(+) -responsive fluorescent probes 4, 5 and 6. In a systematic study, we investigated the influence of the alkoxy substitution in ortho position of the aniline moiety in π-conjugated aniline-1,2,3-triazole-coumarin-fluoroionophores 4, 5 and 6 [R=MeO (4), EtO (5) and iPrO (6)] towards the K(+) -complex stability and K(+) /Na(+) selectivity. The highest K(+) -complex stability showed fluoroionophore 4 with a dissociation constant Kd of 19 mm, but the Kd value increases to 31 mm in combined K(+) /Na(+) solutions, indicating a poor K(+) /Na(+) selectivity. By contrast, 6 showed even in the presence of competitive Na(+) ions equal Kd values (Kd (K+) =45 mm and Kd (K+/Na+) =45 mm) and equal K(+) -induced fluorescence enhancement factors (FEFs=2.3). Thus, the fluorescent probe 6 showed an outstanding K(+) /Na(+) selectivity and is a suitable fluorescent tool to measure physiological K(+) levels in the range of 10-80 mm in vitro. Further, the isopropoxy-substituted N-phenylaza[18]crown-6 ionophore in 6 is a highly K(+) -selective building block with a feasible synthetic route.

14.
Inorg Chem ; 54(20): 10073-80, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26447991

RESUMO

In this work, we report three isostructural 3D frameworks, named IFP-11 (R = Cl), IFP-12 (R = Br), and IFP-13 (R = Et) (IFP = Imidazolate Framework Potsdam) based on a cobalt(II) center and the chelating linker 2-substituted imidazolate-4-amide-5-imidate. These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under microwave (MW)-assisted conditions in DMF. Structure determination of these IFPs was investigated by IR spectroscopy and a combination of powder X-ray diffraction (PXRD) with structure modeling. The structural models were initially built up from the single-crystal X-ray structure determination of IFP-5 (a cobalt center and 2-methylimidazolate-4-amide-5-imidate linker based framework) and were optimized by using density functional theory calculations. Substitution on position 2 of the linker (R = Cl, Br, and Et) in the isostructural IFP-11, -12, and -13 allowed variation of the potential pore window in 1D hexagonal channels (3.8 to 1.7 Å). The potential of the materials to undergo specific interactions with CO2 was measured by the isosteric heat of adsorption. Further, we resynthesized zinc based IFPs, namely IFP-1 (R = Me), IFP-2 (R = Cl), IFP-3 (R = Br), and IFP-4 (R = Et), and cobalt based IFP-5 under MW-assisted conditions with higher yield. The transition from a nucleation phase to the pure crystalline material of IFP-1 in MW-assisted synthesis depends on reaction time. IFP-1, -3, and -5, which are synthesized by MW-assisted conditions, showed an enhancement of N2 and CO2, compared to the analogous conventional electrical (CE) heating method based materials due to crystal defects.

15.
Chemistry ; 21(32): 11306-10, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26178764

RESUMO

A highly K(+)-selective two-photon fluorescent probe for the in vitro monitoring of physiological K(+) levels in the range of 1-100 mM is reported. The two-photon excited fluorescence (TPEF) probe shows a fluorescence enhancement (FE) by a factor of about three in the presence of 160 mM K(+), independently of one-photon (OP, 430 nm) or two-photon (TP, 860 nm) excitation and comparable K(+)-induced FEs in the presence of competitive Na(+) ions. The estimated dissociation constant (Kd ) values in Na(+)-free solutions (Kd (OP) =(28±5) mM and Kd (TP)=(36±6) mM) and in combined K(+)/Na(+) solutions (Kd (OP) =(38±8) mM and Kd (TP)=(46±25) mM) reflecting the high K(+)/Na(+) selectivity of the fluorescent probe. The TP absorption cross-section (σ2PA ) of the TPEF probe+160 mM K(+) is 26 GM at 860 nm. Therefore, the TPEF probe is a suitable tool for the in vitro determination of K(+).

16.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 10): 265-8, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484670

RESUMO

In the title compound, [Ru(C14H16N4)(C16H8N4)](PF6)2·1.422CH3CN, discrete dimers of complex cations, [Ru(L-N4H2)tape](2+) are formed {L-N4H2 = 2,11-di-aza-[3.3](2,6)pyridino-phane; tape = 1,6,7,12-tetra-aza-perylene}, held together by π-π stacking inter-actions via the tape ligand moieties with a centroid-centroid distance of 3.49 (2) Å, assisted by hydrogen bonds between the non-coordinating tape ligand α,α'-di-imine unit and the amine proton of a 2,11-di-aza-[3.3](2,6)-pyridino-phane ligand of the opposite complex cation. The combination of these inter-actions leads to an unusual nearly face-to-face π-π stacking mode. Additional weak C-H⋯N, C-H⋯F, N-H⋯F and P-F⋯π-ring (tape, py) (with F⋯centroid distances of 2.925-3.984 Å) inter-actions are found, leading to a three-dimensional architecture. The Ru(II) atom is coordinated in a distorted octa-hedral geometry, particularly manifested by the Namine-Ru-Namine angle of 153.79 (10)°. The counter-charge is provided by two hexa-fluorido-phosphate anions and the asymmetric unit is completed by aceto-nitrile solvent mol-ecules of crystallization. Disorder was observed for both the hexa-fluorido-phosphate anions as well as the aceto-nitrile solvate mol-ecules, with occupancies for the major moieties of 0.801 (6) for one of the PF6 anions, and a shared occupancy of 0.9215 (17) for the second PF6 anion and a partially occupied aceto-nitrile mol-ecule. A second CH3CN mol-ecule is fully occupied, but 1:1 disordered across a crystallographic inversion center.

17.
Chem Commun (Camb) ; 50(91): 14167-70, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25277847

RESUMO

We report a 1,2,3-triazol fluoroionophore for detecting Na(+) that shows in vitro enhancement in the Na(+)-induced fluorescence intensity and decay time. The Na(+)-selective molecule 1 was incorporated into a hydrogel as a part of a fiber optical sensor. This sensor allows the direct determination of Na(+) in the range of 1-10 mM by measuring reversible fluorescence decay time changes.


Assuntos
Fluorescência , Sódio/análise , Triazóis/química , Estrutura Molecular
18.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 6): m238-9, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24940217

RESUMO

In the title compound, rac-[Ru(C14H16N2)2(C16H8N4)](PF6)2·3C2H3N, discrete dimers of complex cations, [Ru(tmbpy)2-tape](2+), of opposite chirality are formed (tmbpy = tetra-methyl-bipyridine; tape = tetraazaperylene), held together by π-π stacking inter-actions between the tetra-aza-perylene moieties with centroid-centroid distances in the range 3.563 (3)-3.837 (3) Å. These inter-actions exhibit a parallel displaced π-π stacking mode. Additional weak C-H⋯π-ring and C-H⋯N and C-H⋯F inter-actions are found, leading to a three-dimensional architecture. The Ru(II) atom is coordinated in a distorted octa-hedral geometry. The counter-charge is provided by two hexa-fluorido-phosphate anions and the asymmetric unit is completed by three aceto-nitrile solvent mol-ecules of crystallization. Four F atoms of one PF6 (-) anion are disordered over three sets of sites with occupancies of 0.517 (3):0.244 (3):0.239 (3). Two aceto-nitrile solvent mol-ecules are highly disordered and their estimated scattering contribution was subtracted from the observed diffraction data using the SQUEEZE option in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155].

19.
Chemistry ; 20(26): 8170-81, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24888334

RESUMO

Thirty six novel ionic liquids (ILs) with 1-butyl-3-methylimidazolium and 3-methyl-1-octylimidazolium cations paired with 2-substitited 4,5-dicyanoimidazolate anions (substituent at C2 = chloro, bromo, methoxy, vinyl, amino, methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and phenyl) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and single-crystal X-ray crystallography. The effects of cation and anion type and structure on the thermal properties of the resulting ionic liquids, including several room temperature ionic liquids (RTILs) are examined and discussed. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of -22 to -68 °C. The effects of alkyl substituents of the imidazolate anion reflected the crystallization, melting points and thermal decomposition of the ILs. The Coulombic packing force, van der Waals forces and size of the anions can be considered for altering the thermal transitions. Three crystal structures of the ILs were determined and the effects of changes to the cations and anions on the packing of the structure were investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA