Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(11): 110504, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975990

RESUMO

A general attenuator Φ_{λ,σ} is a bosonic quantum channel that acts by combining the input with a fixed environment state σ in a beam splitter of transmissivity λ. If σ is a thermal state, the resulting channel is a thermal attenuator, whose quantum capacity vanishes for λ≤1/2. We study the quantum capacity of these objects for generic σ, proving a number of unexpected results. Most notably, we show that for any arbitrary value of λ>0 there exists a suitable single-mode state σ(λ) such that the quantum capacity of Φ_{λ,σ(λ)} is larger than a universal constant c>0. Our result holds even when we fix an energy constraint at the input of the channel, and implies that quantum communication at a constant rate is possible even in the limit of arbitrarily low transmissivity, provided that the environment state is appropriately controlled. We also find examples of states σ such that the quantum capacity of Φ_{λ,σ} is not monotonic in λ. These findings may have implications for the study of communication lines running across integrated optical circuits, of which general attenuators provide natural models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...