Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtros adicionais

Intervalo de ano
FASEB J ; 33(5): 6226-6238, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30794439


Pulmonary airway epithelial cells (AECs) form a critical interface between host and environment. We investigated the role of the circadian clock using mice bearing targeted deletion of the circadian gene brain and muscle ARNT-like 1 (Bmal1) in AECs. Pulmonary neutrophil infiltration, biomechanical function, and responses to influenza infection were all disrupted. A circadian time-series RNA sequencing study of laser-captured AECs revealed widespread disruption in genes of the core circadian clock and output pathways regulating cell metabolism (lipids and xenobiotics), extracellular matrix, and chemokine signaling, but strikingly also the gain of a novel rhythmic transcriptome in Bmal1-targeted cells. Many of the rhythmic components were replicated in primary AECs cultured in air-liquid interface, indicating significant cell autonomy for control of pulmonary circadian physiology. Finally, we found that metabolic cues dictate phasing of the pulmonary clock and circadian responses to immunologic challenges. Thus, the local circadian clock in AECs is vital in lung health by coordinating major cell processes such as metabolism and immunity.-Zhang, Z. Hunter, L., Wu, G., Maidstone, R., Mizoro, Y., Vonslow, R., Fife, M., Hopwood, T., Begley, N., Saer, B., Wang, P., Cunningham, P., Baxter, M., Durrington, H., Blaikley, J. F., Hussell, T., Rattray, M., Hogenesch, J. B., Gibbs, J., Ray, D. W., Loudon, A. S. I. Genome-wide effect of pulmonary airway epithelial cell-specific Bmal1 deletion.

Sci Rep ; 8(1): 3782, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491349


Resistance to the intestinal parasitic helminth Trichuris muris requires T-helper 2 (TH2) cellular and associated IgG1 responses, with expulsion typically taking up to 4 weeks in mice. Here, we show that the time-of-day of the initial infection affects efficiency of worm expulsion, with strong TH2 bias and early expulsion in morning-infected mice. Conversely, mice infected at the start of the night show delayed resistance to infection, and this is associated with feeding-driven metabolic cues, such that feeding restriction to the day-time in normally nocturnal-feeding mice disrupts parasitic expulsion kinetics. We deleted the circadian regulator BMAL1 in antigen-presenting dendritic cells (DCs) in vivo and found a loss of time-of-day dependency of helminth expulsion. RNAseq analyses revealed that IL-12 responses to worm antigen by circadian-synchronised DCs were dependent on BMAL1. Therefore, we find that circadian machinery in DCs contributes to the TH1/TH2 balance, and that environmental, or genetic perturbation of the DC clock results in altered parasite expulsion kinetics.

J Clin Invest ; 128(6): 2281-2296, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29533925


Recent studies reveal that airway epithelial cells are critical pulmonary circadian pacemaker cells, mediating rhythmic inflammatory responses. Using mouse models, we now identify the rhythmic circadian repressor REV-ERBα as essential to the mechanism coupling the pulmonary clock to innate immunity, involving both myeloid and bronchial epithelial cells in temporal gating and determining amplitude of response to inhaled endotoxin. Dual mutation of REV-ERBα and its paralog REV-ERBß in bronchial epithelia further augmented inflammatory responses and chemokine activation, but also initiated a basal inflammatory state, revealing a critical homeostatic role for REV-ERB proteins in the suppression of the endogenous proinflammatory mechanism in unchallenged cells. However, REV-ERBα plays the dominant role, as deletion of REV-ERBß alone had no impact on inflammatory responses. In turn, inflammatory challenges cause striking changes in stability and degradation of REV-ERBα protein, driven by SUMOylation and ubiquitination. We developed a novel selective oxazole-based inverse agonist of REV-ERB, which protects REV-ERBα protein from degradation, and used this to reveal how proinflammatory cytokines trigger rapid degradation of REV-ERBα in the elaboration of an inflammatory response. Thus, dynamic changes in stability of REV-ERBα protein couple the core clock to innate immunity.

Sci Rep ; 7: 44571, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303919


Obesity impairs the relaxant capacity of adipose tissue surrounding the vasculature (PVAT) and has been implicated in resultant obesity-related hypertension and impaired glucose intolerance. Resident immune cells are thought to regulate adipocyte activity. We investigated the role of eosinophils in mediating normal PVAT function. Healthy PVAT elicits an anti-contractile effect, which was lost in mice deficient in eosinophils, mimicking the obese phenotype, and was restored upon eosinophil reconstitution. Ex vivo studies demonstrated that the loss of PVAT function was due to reduced bioavailability of adiponectin and adipocyte-derived nitric oxide, which was restored after eosinophil reconstitution. Mechanistic studies demonstrated that adiponectin and nitric oxide are released after activation of adipocyte-expressed ß3 adrenoceptors by catecholamines, and identified eosinophils as a novel source of these mediators. We conclude that adipose tissue eosinophils play a key role in the regulation of normal PVAT anti-contractile function.

Tecido Adiposo/metabolismo , Eosinófilos/metabolismo , Hipertensão/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo/patologia , Animais , Aorta/metabolismo , Aorta/patologia , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Catecolaminas/metabolismo , Dieta Hiperlipídica , Humanos , Hipertensão/complicações , Hipertensão/patologia , Camundongos , Óxido Nítrico/metabolismo , Obesidade/complicações , Obesidade/patologia , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo
FASEB J ; 30(11): 3759-3770, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27488122


There is strong diurnal variation in the symptoms and severity of chronic inflammatory diseases, such as rheumatoid arthritis. In addition, disruption of the circadian clock is an aggravating factor associated with a range of human inflammatory diseases. To investigate mechanistic links between the biological clock and pathways underlying inflammatory arthritis, mice were administered collagen (or saline as a control) to induce arthritis. The treatment provoked an inflammatory response within the limbs, which showed robust daily variation in paw swelling and inflammatory cytokine expression. Inflammatory markers were significantly repressed during the dark phase. Further work demonstrated an active molecular clock within the inflamed limbs and highlighted the resident inflammatory cells, fibroblast-like synoviocytes (FLSs), as a potential source of the rhythmic inflammatory signal. Exposure of mice to constant light disrupted the clock in peripheral tissues, causing loss of the nighttime repression of local inflammation. Finally, the results show that the core clock proteins cryptochrome (CRY) 1 and 2 repressed inflammation within the FLSs, and provide novel evidence that a CRY activator has anti-inflammatory properties in human cells. We conclude that under chronic inflammatory conditions, the clock actively represses inflammatory pathways during the dark phase. This interaction has exciting potential as a therapeutic avenue for treatment of inflammatory disease.-Hand, L. E., Hopwood, T. W., Dickson, S. H., Walker, A. L., Loudon, A. S. I., Ray, D. W., Bechtold, D. A., Gibbs, J. E. The circadian clock regulates inflammatory arthritis.

Artrite Reumatoide/metabolismo , Proteínas CLOCK/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Animais , Artrite Reumatoide/terapia , Proteínas CLOCK/genética , Modelos Animais de Doenças , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/terapia , Masculino , Camundongos
BMC Infect Dis ; 14: 520, 2014 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-25261877


BACKGROUND: Trichuriasis is a parasitic disease caused by the human whipworm, Trichuris trichiura. It affects millions worldwide, particularly in the tropics. This nematode parasite burrows into the colonic epithelium resulting in inflammation and morbidity, especially in children. Current treatment relies mainly on general anthelmintics such as mebendazole but resistance to these drugs is increasingly problematic. Therefore, new treatments are urgently required. METHODS: The prospect of using the retinoid X receptor (RXR) antagonist HX531 as a novel anthelmintic was investigated by carrying out multiple viability assays with the mouse whipworm Trichuris muris. RESULTS: HX531 reduced both the motility and viability of T. muris at its L3, L4 and adult stages. Further, bioinformatic analyses show that the T. muris genome possesses an RXR-like receptor, a possible target for HX531. CONCLUSIONS: The study suggested that Trichuris-specific RXR antagonists may be a source of much-needed novel anthelmintic candidates for the treatment of trichuriasis. The identification of an RXR-like sequence in the T. muris genome also paves the way for further research based on this new anthelmintic lead compound.

Anti-Helmínticos/farmacologia , Benzoatos/farmacologia , Compostos de Bifenilo/farmacologia , Proteínas de Helminto/antagonistas & inibidores , Receptores X Retinoide/antagonistas & inibidores , Trichuris/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Avaliação Pré-Clínica de Medicamentos , Proteínas de Helminto/química , Proteínas de Helminto/genética , Humanos , Técnicas In Vitro , Camundongos SCID , Dados de Sequência Molecular , Receptores X Retinoide/química , Receptores X Retinoide/genética , Tricuríase/parasitologia , Trichuris/fisiologia