Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 19264, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848357

RESUMO

We have investigated the structure and chemical composition of nanoparticles synthesized by thermal decomposition of a mixture of iron oleate and manganese oleate in a high-boiling solvent in the presence of Na-oleate and oleic acid as surfactants by analytical transmission electron microscopy (TEM). The particles appear core-shell like in bright field TEM images. Higher spatial resolution TEM (HRTEM) analysis reveals a FeO/MnO like structure in the core and a spinel like structure in the shell. With high-resolution analytical methods like energy dispersive x-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS), the distribution of the metals Mn and Fe was investigated. Differences in the oxidation state of these metals were found between the core and the shell region. The presence of sodium from the used surfactant (Na-oleate) on the surface of the particles has been proved.

2.
Beilstein J Nanotechnol ; 7: 957-69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547613

RESUMO

BACKGROUND: In nanoscale layered S/F1/N/F2/AF heterostructures, the generation of a long-range, odd-in-frequency spin-projection one triplet component of superconductivity, arising at non-collinear alignment of the magnetizations of F1 and F2, exhausts the singlet state. This yields the possibility of a global minimum of the superconducting transition temperature T c, i.e., a superconducting triplet spin-valve effect, around mutually perpendicular alignment. RESULTS: The superconducting triplet spin valve is realized with S = Nb a singlet superconductor, F1 = Cu41Ni59 and F2 = Co ferromagnetic metals, AF = CoO x an antiferromagnetic oxide, and N = nc-Nb a normal conducting (nc) non-magnetic metal, which serves to decouple F1 and F2. The non-collinear alignment of the magnetizations is obtained by applying an external magnetic field parallel to the layers of the heterostructure and exploiting the intrinsic perpendicular easy-axis of the magnetization of the Cu41Ni59 thin film in conjunction with the exchange bias between CoO x and Co. The magnetic configurations are confirmed by superconducting quantum interference device (SQUID) magnetic moment measurements. The triplet spin-valve effect has been investigated for different layer thicknesses, d F1, of F1 and was found to decay with increasing d F1. The data is described by an empirical model and, moreover, by calculations using the microscopic theory. CONCLUSION: The long-range triplet component of superconducting pairing is generated from the singlet component mainly at the N/F2 interface, where the amplitude of the singlet component is suppressed exponentially with increasing distance d F1. The decay length of the empirical model is found to be comparable to twice the electron mean free path of F1 and, thus, to the decay length of the singlet component in F1. Moreover, the obtained data is in qualitative agreement with the microscopic theory, which, however, predicts a (not investigated) breakdown of the triplet spin-valve effect for d F1 smaller than 0.3 to 0.4 times the magnetic coherence length, ξF1.

3.
Beilstein J Nanotechnol ; 2: 59-65, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21977416

RESUMO

Magnéli-type vanadium oxides form the homologous series V(n)O(2) (n) (-1) and exhibit a temperature-induced, reversible metal-insulator first order phase transition (MIT). We studied the change of the adhesion force across the transition temperature between the cleavage planes of various vanadium oxide Magnéli phases (n = 3 … 7) and spherical titanium atomic force microscope (AFM) tips by systematic force-distance measurements with a variable-temperature AFM under ultrahigh vacuum conditions (UHV). The results show, for all investigated samples, that crossing the transition temperatures leads to a distinct change of the adhesion force. Low adhesion corresponds consistently to the metallic state. Accordingly, the ability to modify the electronic structure of the vanadium Magnéli phases while maintaining composition, stoichiometry and crystallographic integrity, allows for relating frictional and electronic material properties at the nano scale. This behavior makes the vanadium Magnéli phases interesting candidates for technology, e.g., as intelligent devices or coatings where switching of adhesion or friction is desired.

4.
Phys Chem Chem Phys ; 9(20): 2564-76, 2007 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-17508089

RESUMO

In this work the electronic structure of V(2)O(5), reduced V(2)O(5-x) (V(16)O(39)) and sodium intercalated NaV(2)O(5) has been studied by both theoretical and experimental methods. Theoretical band structure calculations have been performed using density functional methods (DFT). We have investigated the electron density distribution of the valence states, the total density of states (total DOS) and the partial valence band density of states (PVBDOS). Experimentally, amorphous V(2)O(5) thin films have been prepared by physical vapour deposition (PVD) on freshly cleaved highly oriented pyrolytic graphite (HOPG) substrates at room temperature with an initial oxygen understoichiometry of about 4%, resulting in a net stoichiometry of V(2)O(4.8). These films have been intercalated by sodium using vacuum deposition with subsequent spontaneous intercalation (NaV(2)O(5)) at room temperature. Resonant V3p-V3d photoelectron spectroscopy (ResPES) experiments have been performed to determine the PVBDOS focusing on the calculation of occupation numbers and the determination of effective oxidation state, reflecting ionicity and covalency of the V-O bonds. Using X-ray absorption near edge spectra (XANES) an attempt is made to visualize the changes in the unoccupied DOS due to sodium intercalation. For comparison measurements on nearly stoichiometric V(2)O(5) single crystals have been performed. The experimental data for the freshly cleaved and only marginally reduced V(2)O(5) single crystals and the NaV(2)O(5) results are in good agreement with the calculated values. The ResPES results for V(2)O(4.8) agree in principle with the calculations, but the trends in the change of the ionicity differ between experiment and theory. Experimentally we find partly occupied V 3d states above the oxygen 2p-like states and a band gap between these and the unoccupied states. In theory one finds this occupation scheme assuming oxygen vacancies in V(2)O(5) and by performing a spin-polarized calculation of an antiferromagnetic ordered NaV(2)O(5.).


Assuntos
Substâncias Intercalantes/química , Óxidos/química , Compostos de Vanádio/química , Modelos Moleculares , Conformação Molecular , Oxirredução , Fótons , Sódio/química , Análise Espectral , Termodinâmica
5.
J Neurosci Methods ; 142(2): 243-50, 2005 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-15698664

RESUMO

The in vitro assembling of cellular networks offering control over cell positions and connectivities by patterned culture substrates is a valuable tool for neuroscience research and other applications in cell biology. We developed a versatile technique based on polymer surface modification which allows the patterning of different cell lines for advanced tissue engineering, among them are Pheochromocytoma cells (PC-12). In contrast to other techniques applied for surface patterning, the presented photo patterning by deep UV irradiation is applicable to the widely used cell culture substrate material polystyrene (PS) and should be easily performed in most laboratories. Irradiation of polystyrene with UV radiation of lambda = 185 nm yields mainly carboxyl groups at the polymer surface which can be used to control the spontaneous competitive protein adsorption from serum containing culture media [Welle A, Gottwald E. UV-based patterning of polymeric substrates for cell culture applications. Biomed. Microdev. 2002;4:33-41] or to serve as defined coupling sites for controlled protein/peptide immobilization. Extending our previous studies on patterning hepatoma cells and fibroblasts via spatially defined plasma protein adsorption, we here describe an advanced application to produce patterns of cell repellent albumin domains and cell attractive laminin regions for the patterning of Pheochromocytoma cells.


Assuntos
Neuritos/fisiologia , Processos Fotoquímicos , Polímeros/química , Animais , Bovinos , Adesão Celular/fisiologia , Adesão Celular/efeitos da radiação , Células Cultivadas , Neuritos/efeitos da radiação , Células PC12 , Polímeros/efeitos da radiação , Coelhos , Ratos , Propriedades de Superfície/efeitos da radiação , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...