Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(3): 1557-1565, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31872819

RESUMO

Investigating the hydrogenation of carbonaceous materials is of interest in a wide range of research areas including electronic device development, hydrogen storage, and, in particular, astrocatalytic formation of molecular hydrogen in the universe. Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous in space, locking up close to 15% of the elementary carbon. We have used thermal desorption measurements to study the hydrogenation sequence of pentacene from adding one additional H to the fully hydrogenated pentacene species. The experiments reveal that hydrogenated species with an even number of excess H atoms are highly preferred over hydrogenated species with an odd number of H atoms. In addition, the experiments show that specific hydrogenation states of pentacene with 2, 4, 6, 10, 16 and 22 extra H atoms are preferred over other even numbers. We have investigated the structural stability and activation energy barriers for the superhydrogenation of pentacene using Density Functional Theory. The results reveal a preferential hydrogenation pattern set by the activation energy barriers of the hydrogenation steps. Based on these studies, we formulate simple concepts governing the hydrogenation that apply equally well for different PAHs.

2.
Phys Chem Chem Phys ; 21(25): 13462-13466, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31187827

RESUMO

Functionalization of graphene on Ir(111) is a promising route to modify graphene by chemical means in a controlled fashion at the nanoscale. Yet, the nature of such functionalized sp3 nanodots remains unknown. Density functional theory (DFT) calculations alone cannot differentiate between two plausible structures, namely true graphane and substrate stabilized graphane-like nanodots. These two structures, however, interact dramatically differently with the underlying substrate. Discriminating which type of nanodots forms on the surface is thus of paramount importance for the applications of such prepared nanostructures. By comparing X-ray standing wave measurements against theoretical model structures obtained by DFT calculations we are able to exclude the formation of true graphane nanodots and clearly show the formation graphane-like nanodots.

3.
Science ; 364(6438): 331-332, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31023912

Assuntos
Grafite/química , Som
4.
J Phys Condens Matter ; 31(8): 085001, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30628585

RESUMO

We demonstrate a procedure for obtaining a H-intercalated graphene layer that is found to be chemically decoupled from the underlying metal substrate. Using high-resolution x-ray photoelectron spectroscopy and scanning tunneling microscopy techniques, we reveal that the hydrogen intercalated graphene is p-doped by about 0.28 eV, but also identify structures of interfacial hydrogen. Furthermore, we investigate the reactivity of the decoupled layer towards atomic hydrogen and vibrationally excited molecular hydrogen and compare these results to the case of non-intercalated graphene. We find distinct differences between the two. Finally, we discuss the possibility to form graphane clusters on an iridium substrate by combined intercalation and H atom exposure experiments.

5.
Phys Chem Chem Phys ; 20(45): 28370-28374, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30412217

RESUMO

Chemical functionalization of graphene is one method pursued to engineer new properties into a graphene sheet. Graphene oxide is the most commonly used chemical derivative of graphene. Here we present experimental evidence for the formation of enolate moieties when oxygen atoms are added to the graphene basal plane. The exotic functional groups are stabilized by simultaneous bond formation between the graphene sheet and the underlying Ir(111) substrate. Scanning tunneling microscopy images demonstrate the patterned nature of C-O bond formation and X-ray photoelectron spectroscopy and high-resolution electron energy loss spectroscopy are used to characterize the enolate moiety. The results present a new mechanism for the formation of patterned graphene oxide and provide evidence of a functional group rarely considered for graphene oxide materials.

6.
ACS Nano ; 12(1): 513-520, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29253339

RESUMO

Hydrogen functionalization of graphene by exposure to vibrationally excited H2 molecules is investigated by combined scanning tunneling microscopy, high-resolution electron energy loss spectroscopy, X-ray photoelectron spectroscopy measurements, and density functional theory calculations. The measurements reveal that vibrationally excited H2 molecules dissociatively adsorb on graphene on Ir(111) resulting in nanopatterned hydrogen functionalization structures. Calculations demonstrate that the presence of the Ir surface below the graphene lowers the H2 dissociative adsorption barrier and allows for the adsorption reaction at energies well below the dissociation threshold of the H-H bond. The first reacting H2 molecule must contain considerable vibrational energy to overcome the dissociative adsorption barrier. However, this initial adsorption further activates the surface resulting in reduced barriers for dissociative adsorption of subsequent H2 molecules. This enables functionalization by H2 molecules with lower vibrational energy, yielding an avalanche effect for the hydrogenation reaction. These results provide an example of a catalytically active graphene-coated surface and additionally set the stage for a re-interpretation of previous experimental work involving elevated H2 background gas pressures in the presence of hot filaments.

7.
Nat Commun ; 8(1): 1155, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-29061962

RESUMO

Change History: A correction to this article has been published and is linked from the HTML version of this article.

8.
Nat Commun ; 8(1): 47, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663540

RESUMO

The ability to fabricate nanoscale domains of uniform size in two-dimensional materials could potentially enable new applications in nanoelectronics and the development of innovative metamaterials. However, achieving even minimal control over the growth of two-dimensional lateral heterostructures at such extreme dimensions has proven exceptionally challenging. Here we show the spontaneous formation of ordered arrays of graphene nano-domains (dots), epitaxially embedded in a two-dimensional boron-carbon-nitrogen alloy. These dots exhibit a strikingly uniform size of 1.6 ± 0.2 nm and strong ordering, and the array periodicity can be tuned by adjusting the growth conditions. We explain this behaviour with a model incorporating dot-boundary energy, a moiré-modulated substrate interaction and a long-range repulsion between dots. This new two-dimensional material, which theory predicts to be an ordered composite of uniform-size semiconducting graphene quantum dots laterally integrated within a larger-bandgap matrix, holds promise for novel electronic and optoelectronic properties, with a variety of potential device applications.The nanoscale patterning of two-dimensional materials offers the possibility of novel optoelectronic properties; however, it remains challenging. Here, Camilli et al. show the self-assembly of large arrays of highly-uniform graphene dots imbedded in a BCN matrix, enabling novel devices.

9.
ACS Nano ; 10(12): 10798-10807, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024374

RESUMO

Band gap engineering in hydrogen functionalized graphene is demonstrated by changing the symmetry of the functionalization structures. Small differences in hydrogen adsorbate binding energies on graphene on Ir(111) allow tailoring of highly periodic functionalization structures favoring one distinct region of the moiré supercell. Scanning tunneling microscopy and X-ray photoelectron spectroscopy measurements show that a highly periodic hydrogen functionalized graphene sheet can thus be prepared by controlling the sample temperature (Ts) during hydrogen functionalization. At deposition temperatures of Ts = 645 K and above, hydrogen adsorbs exclusively on the HCP regions of the graphene/Ir(111) moiré structure. This finding is rationalized in terms of a slight preference for hydrogen clusters in the HCP regions over the FCC regions, as found by density functional theory calculations. Angle-resolved photoemission spectroscopy measurements demonstrate that the preferential functionalization of just one region of the moiré supercell results in a band gap opening with very limited associated band broadening. Thus, hydrogenation at elevated sample temperatures provides a pathway to efficient band gap engineering in graphene via the selective functionalization of specific regions of the moiré structure.

10.
J Chem Phys ; 145(17): 174708, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27825229

RESUMO

The changes in the strength of the interaction between the polycyclic aromatic hydrocarbon, coronene, and graphite as a function of the degree of super-hydrogenation of the coronene molecule are investigated using temperature programmed desorption. A decrease in binding energy is observed for increasing degrees of super-hydrogenation, from 1.78 eV with no additional hydrogenation to 1.43 eV for the fully super-hydrogenated molecule. Density functional theory calculations using the optB88-vdW functional suggest that the decrease in binding energy is mostly due to an increased buckling of the molecule rather than the associated decrease in the number of π-electrons.

11.
Faraday Discuss ; 180: 495-509, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915827

RESUMO

Graphene, a single layer of carbon atoms arranged in an aromatic hexagonal lattice, has recently drawn attention as a potential coating material due to its impermeability, thermodynamic stability, transparency and flexibility. Here, the effectiveness of a model system, a graphene covered Pt(100) surface, for studying the anti-corrosion properties of graphene, has been evaluated. Chemical vapour deposition techniques were used to cover the single crystal surface with a complete layer of high-quality graphene and the surface was characterised after exposure to corrosive environments with scanning tunnelling microscopy (STM) and Raman spectroscopy. Graphene covered Pt samples were exposed to: (i) ambient atmosphere for 6 months at room temperature and 60 °C for 75 min, (ii) Milli-Q water for 14 hours at room temperature and 60 °C for 75 min, and (iii) saltwater (0.513 M NaCl) for 75 min at room temperature and 60 °C. STM provides atomic resolution images, which show that the graphene layer and the underlying surface reconstruction on the Pt(100) surface remain intact over the majority of the surface under all conditions, except exposure to saltwater when the sample is kept at 60 °C. Raman spectroscopy shows a broadening of all graphene related peaks due to hybridisation between the surface Pt d-orbitals and the graphene π-bands. This hybridisation also survives exposure to all environments except saltwater on the hot surface, with the latter leading to peaks more representative of a quasi free-standing graphene layer. A mechanism explaining the corrosive effect of hot saltwater is suggested. Based on these experiments, graphene is proposed to offer protection against corrosion in all tested environments, except saltwater on a hot surface, and Raman spectroscopy is proposed as a useful method for indirectly assessing the chemical state of the Pt surface.

12.
Phys Chem Chem Phys ; 16(8): 3381-7, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24270708

RESUMO

Carbonaceous materials contribute to a significant proportion of the interstellar dust inventory. Reactions on such grain surfaces are thought to play important roles in interstellar chemical networks. Of particular importance are reactions involving hydrogen atoms, and pathways to the formation of the most abundant molecular species, H2. Polycyclic aromatic hydrocarbons (PAHs) are an additional carbon reservoir, accounting for around 10% of the galactic carbon budget. Using thermal desorption and mass spectrometric techniques, we have investigated the interaction between PAH molecules and carbonaceous grain surfaces. We demonstrate that deuterium atoms adsorbed on graphite can react with adsorbed PAH molecules, forming superhydrogenated PAH species. Furthermore, by considering the number of D-atoms remaining bound to the graphite surface and the additional D-atoms in the observed superhydrogenated species, we see evidence for a significant release of deuterium from the graphite surface. We suggest that further reactive processes may be responsible for part of this deuterium loss, indicating that PAHs adsorbed on hydrogenated carbonaceous grains in warm interstellar environments may serve as a route to release H2 as well as forming superhydrogenated PAH species.

13.
ACS Nano ; 7(5): 3823-32, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23586740

RESUMO

Combined fast X-ray photoelectron spectroscopy and density functional theory calculations reveal the presence of two types of hydrogen adsorbate structures at the graphene/Ir(111) interface, namely, graphane-like islands and hydrogen dimer structures. While the former give rise to a periodic pattern, dimers tend to destroy the periodicity. Our data reveal distinctive growth rates and stability of both types of structures, thereby allowing one to obtain well-defined patterns of hydrogen clusters. The ability to control and manipulate the formation and size of hydrogen structures on graphene facilitates tailoring of its properties for a wide range of applications by means of covalent functionalization.

14.
J Phys Condens Matter ; 25(9): 094001, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23399941

RESUMO

Quasi-free-standing monolayer graphene can be produced by intercalating species like oxygen or hydrogen between epitaxial graphene and the substrate crystal. If the graphene was indeed decoupled from the substrate, one would expect the observation of a similar electronic dispersion and many-body effects, irrespective of the substrate and the material used to achieve the decoupling. Here we investigate the electron-phonon coupling in two different types of quasi-free-standing monolayer graphene: decoupled from SiC via hydrogen intercalation and decoupled from Ir via oxygen intercalation. The two systems show similar overall behaviours of the self-energy and a weak renormalization of the bands near the Fermi energy. The electron-phonon coupling is found to be so weak that it renders the precise determination of the coupling constant λ through renormalization difficult. The estimated value of λ is 0.05(3) for both systems.

15.
ACS Nano ; 6(11): 10258-66, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23106828

RESUMO

The limitations of graphene as an effective corrosion-inhibiting coating on metal surfaces, here exemplified by the hex-reconstructed Pt(100) surface, are probed by scanning tunneling microscopy measurements and density functional theory calculations. While exposure of small molecules directly onto the Pt(100) surface will lift the reconstruction, a single graphene layer is observed to act as an effective coating, protecting the reactive surface from O(2) exposure and thus preserving the reconstruction underneath the graphene layer in O(2) pressures as high as 10(-4) mbar. A similar protective effect against CO is observed at CO pressures below 10(-6) mbar. However, at higher pressures CO is observed to intercalate under the graphene coating layer, thus lifting the reconstruction. The limitations of the coating effect are further tested by exposure to hot atomic hydrogen. While the coating can withstand these extreme conditions for a limited amount of time, after substantial exposure, the Pt(100) reconstruction is lifted. Annealing experiments and density functional theory calculations demonstrate that the basal plane of the graphene stays intact and point to a graphene-mediated mechanism for the H-induced lifting of the reconstruction.


Assuntos
Grafite/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Platina/química , Adsorção , Teste de Materiais
16.
ACS Nano ; 6(11): 9551-8, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23051045

RESUMO

Using photoemission spectroscopy techniques, we show that oxygen intercalation is achieved on an extended layer of epitaxial graphene on Ir(111), which results in the "lifting" of the graphene layer and in its decoupling from the metal substrate. The oxygen adsorption below graphene proceeds as on clean Ir(111), giving only a slightly higher oxygen coverage. Upon lifting, the C 1s signal shows a downshift in binding energy, due to the charge transfer to graphene from the oxygen-covered metal surface. Moreover, the characteristic spectral signatures of the graphene-substrate interaction in the valence band are removed, and the spectrum of strongly hole-doped, quasi free-standing graphene with a single Dirac cone around the K point is observed. The oxygen can be deintercalated by annealing, and this process takes place at around T = 600 K, in a rather abrupt way. A small amount of carbon atoms is lost, implying that graphene has been etched. After deintercalation graphene restores its interaction with the Ir(111) substrate. Additional intercalation/deintercalation cycles readily occur at lower oxygen doses and temperatures, consistently with an increasingly defective lattice. Our findings demonstrate that oxygen intercalation is an efficient method for fully decoupling an extended layer of graphene from a metal substrate, such as Ir(111). They pave the way for the fundamental research on graphene, where extended, ordered layers of free-standing graphene are important and, due to the stability of the intercalated system in a wide temperature range, also for the advancement of next-generation graphene-based electronics.


Assuntos
Cristalização/métodos , Grafite/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oxigênio/química , Teste de Materiais , Tamanho da Partícula
17.
Nat Mater ; 9(4): 315-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20228819

RESUMO

Graphene, a single layer of graphite, has recently attracted considerable attention owing to its remarkable electronic and structural properties and its possible applications in many emerging areas such as graphene-based electronic devices. The charge carriers in graphene behave like massless Dirac fermions, and graphene shows ballistic charge transport, turning it into an ideal material for circuit fabrication. However, graphene lacks a bandgap around the Fermi level, which is the defining concept for semiconductor materials and essential for controlling the conductivity by electronic means. Theory predicts that a tunable bandgap may be engineered by periodic modulations of the graphene lattice, but experimental evidence for this is so far lacking. Here, we demonstrate the existence of a bandgap opening in graphene, induced by the patterned adsorption of atomic hydrogen onto the Moiré superlattice positions of graphene grown on an Ir(111) substrate.

18.
J Am Chem Soc ; 131(25): 8744-5, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19496562

RESUMO

The adsorbate structures of atomic hydrogen on the basal plane of graphene on a SiC substrate is revealed by Scanning Tunneling Microscopy (STM). At low hydrogen coverage the formation of hydrogen dimer structures is observed, while at higher coverage larger disordered clusters are seen. We find that hydrogenation preferentially occurs on the protruding/high tunneling probability areas of the graphene layer modulated by the underlying 6 x 6 reconstruction of SiC. Hydrogenation offers the interesting possibility to manipulate both the electronic and chemical properties of graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA