Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(30): 20937-20944, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38979882

RESUMO

Amidst burgeoning interest, atomically precise copper nanoclusters (Cu NCs) have emerged as a remarkable class of nanomaterials distinguished by their unparalleled reactivity. Nonetheless, the synthesis of hydride-free Cu NCs and their role as stable catalysts remain infrequently explored. Here, we introduce a facile synthetic approach to fabricate a hydride-free [Cu7(SC5H9)7(PPh3)3] (Cu7) NC and delineate its photophysical properties intertwined with their structural configuration. Moreover, the utilization of its photophysical properties in a photoinduced C-C coupling reaction demonstrates remarkable specificity toward cross-coupling products with high yields. The combined experimental and theoretical investigation reveals a nonradical mechanistic pathway distinct from its counterparts, offering promising prospects for designing hydride-free Cu NC catalysts in the future and unveiling the selectivity of the hydride-free [Cu7(SC5H9)7(PPh3)3] NC in photoinduced Sonogashira C-C coupling through a polar reaction pathway.

2.
Small ; 20(2): e2304210, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37626458

RESUMO

Due to their high designability, unique geometric and electronic structures, and surface coordination chemistry, atomically precise metal nanoclusters are an emerging class of functional nanomaterials at the forefront of materials research. However, the current research on metal nanoclusters is mainly fundamental, and their practical applications are still uncharted. The surface binding properties and redox activity of Au24 Pt(PET)18 (PET: phenylethanethiolate, SCH2 CH2 Ph) nanoclusters are herein harnessed as an high-efficiency electrocatalyst for the anchoring and rapid conversion of lithium polysulfides in lithium-sulfur batteries (LSBs). Au24 Pt(PET)18 @G composites are prepared by using the large specific surface area, high porosity, and conductive network of graphene (G) for the construction of battery separator that can inhibit polysulfide shuttle and accelerate electrochemical kinetics. Resultantly, the LSB using a Au24 Pt(PET)18 @G-based separator presents a high reversible specific capacity of 1535.4 mA h g-1 for the first cycle at 0.2 A g-1 and a rate capability of 887 mA h g-1 at 5 A g-1 . After 1000 cycles at 5 A g-1 , the capacity is 558.5 mA h g-1 . This study is a significant step toward the application of metal nanoclusters as optimal electrocatalysts for LSBs and other sustainable energy storage systems.

3.
J Am Chem Soc ; 145(43): 23533-23540, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862604

RESUMO

Electronic structures of anion-templated silver nanoclusters (Ag NCs) are not well understood compared to conventional, template-free Ag NCs. In this study, we synthesized three new anion-templated Ag NCs, namely [S@Ag17(S-4CBM)15(PPh3)5]0, [S@Ag18(S-4CBM)16(PPh3)8]0, and [Cl@Ag18(S-4CBM)16(PPh3)8][PPh4], where S-4CBM = 4-chlorobenzene methanethiolate, and single-crystal X-ray crystallography revealed that they have S@Ag6, S@Ag10, and Cl@Ag10 cores, respectively. Investigation of their electronic structures by optical spectroscopy and theoretical calculations elucidated the following unique features: (1) their electronic structures are different from those of template-free Ag NCs described by the superatomic concept; (2) optical absorption in the range of 550-400 nm for S2--templated Ag NCs is attributed to the charge transitions from S2--templated Ag-cage orbitals to the s-shaped orbital in the S2- moiety; (3) the Cl--templated Ag NCs can be viewed as [Cl@Ag18(S-4CBM)16(PPh3)8]0[PPh4]0 rather than the ion pair [Cl@Ag18(S-4CBM)16(PPh3)8]-[PPh4]+; and (4) singlet-coupled singly occupied orbitals are involved in the optical absorption of the Cl--templated Ag NC.

4.
Chemistry ; 29(49): e202300706, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37293845

RESUMO

Nitrobenzene (NB) is a highly toxic chemical and a cause for concern to human health and the environment. Hence, it is worth designing new efficient and robust sensing platforms for NB. In this study, we present three newly synthesized luminescent silver cluster-based coordination polymers, {[Ag10 (StBu)6 (CF3 COO)4 (hpbt)] (DMAc)2 (CH3 CN)2 }n (hpbt=N,N,N',N'N",N"-hexa(pyridine-4-yl)benzene-1,3,5-triamine), [Ag12 (StBu)6 (CF3 COO)6 (bpva)3 ]n (bpva=9,10-Bis(2-(pyridin-4-yl)vinyl)anthracene), and {[Ag12 (StBu)6 (CF3 COO)6 (bpb)(DMAc)2 (H2 O)2 ] (DMAc)2 }n (bpb=1,4-Bis(4-pyridyl)benzene) composed of Ag10 , Ag12 and Ag12 cluster cores, respectively, connected by multidentate pyridine linkers. In addition, two new luminescent polymorphic silver(I)-based coordination polymers, [Ag(CF3 COO)(dpa)]n (dpa=9,10-di(4-pyridyl)anthracene) referred to as Agdpa (H) and Agdpa (R), where H and R denote hexagon- and rod-like crystal shapes, respectively, have been prepared. The coordination polymers exhibit highly sensitive luminescence quenching effects to NB, attributed to the π-π stacking interactions between the polymers and NB as well as the electron-withdrawing character of NB.

5.
Small ; 19(34): e2208287, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093189

RESUMO

For the realization of a next-generation energy society, further improvement in the activity of water-splitting photocatalysts is essential. Platinum (Pt) is predicted to be the most effective cocatalyst for hydrogen evolution from water. However, when the number of active sites is increased by decreasing the particle size, the Pt cocatalyst is easily oxidized and thereby loses its activity. In this study, a method to load ultrafine, monodisperse, metallic Pt nanoclusters (NCs) on graphitic carbon nitride is developed, which is a promising visible-light-driven photocatalyst. In this photocatalyst, a part of the surface of the Pt NCs is protected by sulfur atoms, preventing oxidation. Consequently, the hydrogen-evolution activity per loading weight of Pt cocatalyst is significantly improved, 53 times, compared with that of a Pt-cocatalyst loaded photocatalyst by the conventional method. The developed method is also effective to enhance the overall water-splitting activity of other advanced photocatalysts such as SrTiO3 and BaLa4 Ti4 O15 .

6.
Commun Chem ; 6(1): 57, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977829

RESUMO

Metal nanoclusters composed of noble elements such as gold (Au) or silver (Ag) are regarded as superatoms. In recent years, the understanding of the materials composed of superatoms, which are often called superatomic molecules, has gradually progressed for Au-based materials. However, there is still little information on Ag-based superatomic molecules. In the present study, we synthesise two di-superatomic molecules with Ag as the main constituent element and reveal the three essential conditions for the formation and isolation of a superatomic molecule comprising two Ag13-xMx structures (M = Ag or other metal; x = number of M) connected by vertex sharing. The effects of the central atom and the type of bridging halogen on the electronic structure of the resulting superatomic molecule are also clarified in detail. These findings are expected to provide clear design guidelines for the creation of superatomic molecules with various properties and functions.

7.
Chem Commun (Camb) ; 59(27): 4000-4003, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36876908

RESUMO

Herein, we report two newly synthesized silver cluster-assembled materials (SCAMs), [Ag14(StBu)10(CF3COO)4(bpa)2]n (bpa = 1,2-bis(4-pyridyl)acetylene) and [Ag12(StBu)6(CF3COO)6(bpeb)3]n (bpeb = 1,4-bis(pyridin-4-ylethynyl)benzene) composed of Ag14 and Ag12 chalcogenolate cluster cores, respectively, bridged by acetylenic bispyridine linkers. The linker structures and electrostatic interaction between positively charged SCAMs and negatively charged DNA confer the SCAMs with the ability to suppress the high background fluorescence of single-stranded (ss) DNA probes with SYBR Green I nucleic acid stain, leading to high signal-to-noise ratio for label-free target DNA detection.


Assuntos
Ácidos Nucleicos , Prata , Prata/química , DNA/química , DNA de Cadeia Simples
8.
Nanoscale ; 15(11): 5201-5208, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36789780

RESUMO

Practical electrochemical water splitting and carbon-dioxide reduction are desirable for a sustainable energy society. In particular, facilitating the oxygen evolution reaction (OER, the reaction at the anode) will increase the efficiency of these reactions. Nickel (Ni) compounds are excellent OER catalysts under basic conditions, and atomically precise Ni clusters have been actively studied to understand their complex reaction mechanisms. In this study, we evaluated the geometric/electronic structure of tiara-like metal nanoclusters [Nin(PET)2n; n = 4, 5, 6, where PET refers to phenylethanethiolate] with the same SR ligand. The geometric structure of Ni5(SR)10 was determined for the first time using single-crystal X-ray diffraction. Additionally, combined electrochemical measurements and X-ray absorption fine structure measurements revealed that Ni5(SR)10 easily forms an OER intermediate and therefore exhibits a high specific activity.

9.
Chem Sci ; 13(19): 5546-5556, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694356

RESUMO

To use atomically precise metal nanoclusters (NCs) in various application fields, it is essential to establish size-selective synthesis methods for the metal NCs. Studies on thiolate (SR)-protected gold NCs (Au n (SR) m NCs) revealed that the atomically precise Au n (SR) m NC, which has a different chemical composition from the precursor, can be synthesized size-selectively by inducing transformation in the framework structure of the metal NCs by a ligand-exchange reaction. In this study, we selected the reaction of [Au25(SC2H4Ph)18]- (SC2H4Ph = 2-phenylethanethiolate) with 4-tert-butylbenzenethiol ( t BuPhSH) as a model ligand-exchange reaction and attempted to obtain new metal NCs by changing the amount of thiol, the central atom of the precursor NCs, or the reaction time from previous studies. The results demonstrated that [Au23(SPh t Bu)17]0, [Au26Pd(SPh t Bu)20]0 (Pd = palladium) and [Au24Pt(SC2H4Ph)7(SPh t Bu)11]0 (Pt = platinum) were successfully synthesized in a high proportion. To best of our knowledge, no report exists on the selective synthesis of these three metal NCs. The results of this study show that a larger variety of metal NCs could be synthesized size-selectively than at present if the ligand-exchange reaction is conducted while changing the reaction conditions and/or the central atoms of the precursor metal NCs from previous studies.

10.
Nanoscale ; 13(35): 14679-14687, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34558590

RESUMO

The improvement of oxygen reduction reaction (ORR) catalysts is essential before polymer electrolyte fuel cells can be used widely. To this end, we established a simple method for the size-selective synthesis of a series of ligand-protected platinum nanoclusters with ∼1 nm particle size (Ptn NCs; n = ∼35, ∼51, and ∼66) and narrow size distribution (±âˆ¼4 Pt atoms) under atmospheric conditions. Using this method, each ligand-protected ∼1 nm Pt NC was obtained in a relatively high yield (nearly 80% for Pt∼66). We succeeded in adsorbing each ligand-protected ∼1 nm Pt NC on carbon black (CB) and then removing most of the ligands from the surface of the Pt NCs via calcination while maintaining the original size. The obtained Pt∼35/CB, Pt∼51/CB, and Pt∼66/CB exhibited ORR mass activities that were 1.6, 2.1, and 1.6 times higher, respectively, than that of commercial CB supported-Pt nanoparticles, and also display high durability.

11.
J Chem Phys ; 155(2): 024302, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34266257

RESUMO

Icosahedral noble-metal 13-atom nanoclusters (NCs) can form connected structures, which can be regarded as superatomic molecules, by vertex sharing. However, there have been very few reports on the superatomic molecules formed using silver (Ag) as the base element. In this study, we synthesized [Ag23Pd2(PPh3)10Cl7]0 (Pd = palladium, PPh3 = triphenylphosphine, Cl = chloride), in which two icosahedral 13-atom NCs are connected, and elucidated its geometric and electronic structures to clarify what type of superatomic molecules can be synthesized. The results revealed that [Ag23Pd2(PPh3)10Cl7]0 is a synthesizable superatomic molecule. Single crystal x-ray diffraction analysis showed that the metal-metal distances in and between the icosahedral structures of [Ag23Pd2(PPh3)10Cl7]0 are slightly shorter than those of previously reported [Ag23Pt2(PPh3)10Cl7]0, whereas the metal-PPh3 distances are slightly longer. On the basis of several experiments and density functional theory calculations, we concluded that [Ag23Pd2(PPh3)10Cl7]0 and previously reported [Ag23Pt2(PPh3)10Cl7]0 are more stable than [Ag25(PPh3)10Cl7]2+ because of their stronger superatomic frameworks (metal cores). These findings are expected to lead to clear design guidelines for creation of new superatomic molecules.

12.
Angew Chem Int Ed Engl ; 60(39): 21340-21350, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34038609

RESUMO

Recently, the creation of new heterogeneous catalysts using the unique electronic/geometric structures of small metal nanoclusters (NCs) has received considerable attention. However, to achieve this, it is extremely important to establish methods to remove the ligands from ligand-protected metal NCs while preventing the aggregation of metal NCs. In this study, the ligand-desorption process during calcination was followed for metal-oxide-supported 2-phenylethanethiolate-protected gold (Au) 25-atom metal NCs using five experimental techniques. The results clearly demonstrate that the ligand-desorption process consists of ligand dissociation on the surface of the metal NCs, adsorption of the generated compounds on the support and desorption of the compounds from the support, and the temperatures at which these processes occurred were elucidated. Based on the obtained knowledge, we established a method to form a metal-oxide layer on the surface of Au NCs while preventing their aggregation, thereby succeeding in creating a water-splitting photocatalyst with high activity and stability.

13.
Nanoscale Horiz ; 6(6): 409-448, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33903861

RESUMO

Ligand-protected metal nanoclusters controlled by atomic accuracy (i. e. atomically precise metal NCs) have recently attracted considerable attention as active sites in heterogeneous catalysts. Using these atomically precise metal NCs, it becomes possible to create novel heterogeneous catalysts based on a size-specific electronic/geometrical structure of metal NCs and understand the mechanism of the catalytic reaction easily. However, to create high-performance heterogeneous catalysts using atomically precise metal NCs, it is often necessary to remove the ligands from the metal NCs. This review summarizes previous studies on the creation of heterogeneous catalysts using atomically precise metal NCs while focusing on the calcination as a ligand-elimination method. Through this summary, we intend to share state-of-art techniques and knowledge on (1) experimental conditions suitable for creating high-performance heterogeneous catalysts (e.g., support type, metal NC type, ligand type, and calcination temperature), (2) the mechanism of calcination, and (3) the mechanism of catalytic reaction over the created heterogeneous catalyst. We also discuss (4) issues that should be addressed in the future toward the creation of high-performance heterogeneous catalysts using atomically precise metal NCs. The knowledge and issues described in this review are expected to lead to clear design guidelines for the creation of novel heterogeneous catalysts.

14.
Small ; 17(27): e2005328, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33522090

RESUMO

Metal nanoclusters (NCs), which are composed of about 250 or fewer metal atoms, possess great potential as novel functional materials. Fundamental research on metal NCs gradually started in the 1960s, and since 2000, thiolate (SR)-protected metal NCs have been the main metal NCs actively studied. The precise and systematic isolation of SR-protected metal NCs has been achieved in 2005. Since then, research on SR-protected metal NCs for both basic science and practical application has rapidly expanded. This review describes this recent progress in the field of SR-protected metal NCs in three areas: synthesis, understanding, and application. Specifically, the recent study of alloy NCs and connected structures composed of NCs is highlighted in the "synthesis" section, recent knowledge on the reactivity of NCs in solution is highlighted in the "understanding" section, and the applications of NCs in the energy and environmental field are highlighted in the "application" section. This review provides insight on the current state of research on SR-protected metal NCs and discusses the challenges to be overcome for further development in this field as well as the possibilities that these materials can contribute to solving the problems facing modern society.


Assuntos
Ouro , Nanopartículas Metálicas , Ligas
15.
Chemistry ; 26(69): 16149, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33119138

RESUMO

Invited for the cover of this issue is the group of Yuichi Negishi at Tokyo University of Science. The image depicts the alloy nanoclusters reported in this review. Read the full text of the article at 10.1002/chem.202001877.

16.
Nanomaterials (Basel) ; 10(6)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503177

RESUMO

Metal nanoclusters (NCs), which consist of several, to about one hundred, metal atoms, have attracted much attention as functional nanomaterials for use in nanotechnology. Because of their fine particle size, metal NCs exhibit physical/chemical properties and functions different from those of the corresponding bulk metal. In recent years, many techniques to precisely synthesize metal NCs have been developed. However, to apply these metal NCs in devices and as next-generation materials, it is necessary to assemble metal NCs to a size that is easy to handle. Recently, multiple techniques have been developed to form one-, two-, and three-dimensional connected structures (CSs) of metal NCs through self-assembly. Further progress of these techniques will promote the development of nanomaterials that take advantage of the characteristics of metal NCs. This review summarizes previous research on the CSs of metal NCs. We hope that this review will allow readers to obtain a general understanding of the formation and functions of CSs and that the obtained knowledge will help to establish clear design guidelines for fabricating new CSs with desired functions in the future.

17.
Chemistry ; 26(69): 16150-16193, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32453462

RESUMO

Metal nanoclusters (NCs) have a particle size of about one nanometer, which makes them the smallest unit that can give a function to a substance. In addition, metal NCs possess physical and chemical properties that are different from those of the corresponding bulk metals. Metal NCs with such characteristics are expected to be important for use in nanotechnology. Research on the precise synthesis of metal NCs and elucidation of their physical/chemical properties and functions is being actively conducted. When metal NCs are alloyed, it is possible to obtain further various electronic and geometrical structures and functions. Thus, research on alloy NCs has become a hot topic in the study of metal NCs and the number of publications on alloy NCs has increased explosively in recent years. Such publications have provided much insight into the effects of alloying on the electronic structure and function of metal NCs. However, the rapid increase in knowledge has made it difficult for researchers (especially those new to the field) to grasp all of it. Therefore, in this review, we summarize the reported chemical composition, geometrical structure, electronic structure, and physical and chemical properties of Aun-x Mx (SR)m , Agn-x Mx (SR)m , Aun-x Mx (PR3 )l (SR)m , and Agn-x Mx (PR3 )l (SR)m (Au=gold, Ag=silver, M=heteroatom, PR3 =phosphine, and SR=thiolate) NCs. This review is expected to help researchers understand the characteristics of alloy NCs and lead to clear design guidelines to develop new alloy NCs with intended functions.

18.
Nanoscale ; 12(18): 9969-9979, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32167113

RESUMO

To establish an ultimate energy conversion system consisting of a water-splitting photocatalyst and a fuel cell, it is necessary to further increase the efficiencies of the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the oxygen reduction reaction (ORR). Recently, it was demonstrated that thiolate (SR)-protected gold clusters, Aun(SR)m, and their related alloy clusters can serve as model catalysts for these three reactions. However, as the previous data have been obtained under different experimental conditions, it is difficult to use them to gain a deep understanding of the means to attain higher activity in these reactions. Herein, we measured the HER, OER, and ORR activities of Aun(SR)m and alloy clusters containing different numbers of constituent atoms, ligand functional groups, and heteroatom species under identical experimental conditions. We obtained a comprehensive set of results that illustrates the effect of each parameter on the activities of the three reactions. Comparison of the series of results revealed that decreasing the number of constituent atoms in the cluster, decreasing the thickness of the ligand layer, and substituting Au with Pd improve the activities in all reactions. Taking the stability of the cluster into consideration, [Au24Pd(PET)18]0 (PET = 2-phenylethanethiolate) can be considered as a metal cluster with high potential as an HER, OER, and ORR catalyst. These findings are expected to provide clear design guidelines for the development of highly active HER, OER, and ORR catalysts using Aun(SR)m and related alloy clusters, which would allow realization of an ultimate energy conversion system.

19.
Nanoscale ; 12(15): 8017-8039, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32207494

RESUMO

Fine metal clusters have attracted much attention from the viewpoints of both basic and applied science for many years because of their unique physical/chemical properties and functions, which differ from those of bulk metals. Among these materials, thiolate (SR)-protected gold clusters (Aun(SR)m clusters) have been the most studied metal clusters since 2000 because of their ease of synthesis and handling. However, in the early 2000s, it was not easy to isolate these metal clusters. Therefore, high-resolution separation methods were explored, and several atomic-level separation methods, including polyacrylamide gel electrophoresis (PAGE), high-performance liquid chromatography (HPLC), and thin-layer chromatography (TLC), were successively established. These techniques have made it possible to isolate a series of Aun(SR)m clusters, and much knowledge has been obtained on the correlation between the chemical composition and fundamental properties such as the stability, electronic structure, and physical properties of Aun(SR)m clusters. In addition, these high-resolution separation techniques are now also frequently used to evaluate the distribution of the product and to track the reaction process. In this way, high-resolution separation techniques have played an essential role in the study of Aun(SR)m clusters. However, only a few reviews have focused on this work. This review focuses on PAGE, HPLC, and TLC separation techniques, which offer high resolution and repeatability, and summarizes previous studies on the high-resolution separation of Aun(SR)m and related clusters with the purpose of promoting a better understanding of the features and the utility of these techniques.

20.
Angew Chem Int Ed Engl ; 59(18): 7076-7082, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32043742

RESUMO

The activity of many water-splitting photocatalysts could be improved by the use of RhIII -CrIII mixed oxide (Rh2-x Crx O3 ) particles as cocatalysts. Although further improvement of water-splitting activity could be achieved if the size of the Rh2-x Crx O3 particles was decreased further, it is difficult to load ultrafine (<2 nm) Rh2-x Crx O3 particles onto a photocatalyst by using conventional loading methods. In this study, a new loading method was successfully established and was used to load Rh2-x Crx O3 particles with a size of approximately 1.3 nm and a narrow size distribution onto a BaLa4 Ti4 O15 photocatalyst. The obtained photocatalyst exhibited an apparent quantum yield of 16 %, which is the highest achieved for BaLa4 Ti4 O15 to date. Thus, the developed loading technique of Rh2-x Crx O3 particles is extremely effective at improving the activity of the water-splitting photocatalyst BaLa4 Ti4 O15 . This method is expected to be extended to other advanced water-splitting photocatalysts to achieve higher quantum yields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA