Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Theranostics ; 11(16): 8112-8128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335983


The coiled-coil domain containing protein members have been well documented for their roles in many diseases including cancers. However, the function of the coiled-coil domain containing 65 (CCDC65) remains unknown in tumorigenesis including gastric cancer. Methods: CCDC65 expression and its correlation with clinical features and prognosis of gastric cancer were analyzed in tissue. The biological role and molecular basis of CCDC65 were performed via in vitro and in vivo assays and a various of experimental methods including co-immunoprecipitation (Co-IP), GST-pull down and ubiquitination analysis et al. Finally, whether metformin affects the pathogenesis of gastric cancer by regulating CCDC65 and its-mediated signaling was investigated. Results: Here, we found that downregulated CCDC65 level was showed as an unfavourable factor in gastric cancer patients. Subsequently, CCDC65 or its domain (a.a. 130-484) was identified as a significant suppressor in GC growth and metastasis in vitro and in vivo. Molecular basis showed that CCDC65 bound to ENO1, an oncogenic factor has been widely reported to promote the tumor pathogenesis, by its domain (a.a. 130-484) and further promoted ubiquitylation and degradation of ENO1 by recruiting E3 ubiquitin ligase FBXW7. The downregulated ENO1 decreased the binding with AKT1 and further inactivated AKT1, which led to the loss of cell proliferation and EMT signal. Finally, we observed that metformin, a new anti-cancer drug, can significantly induce CCDC65 to suppress ENO1-AKT1 complex-mediated cell proliferation and EMT signals and finally suppresses the malignant phenotypes of gastric cancer cells. Conclusion: These results firstly highlight a critical role of CCDC65 in suppressing ENO1-AKT1 pathway to reduce the progression of gastric cancer and reveals a new molecular mechanism for metformin in suppressing gastric cancer. Our present study provides a new insight into the mechanism and therapy for gastric cancer.

Biomarcadores Tumorais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glicoproteínas/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , China , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor/fisiologia , Glicoproteínas/genética , Humanos , Masculino , Metformina/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oncogenes , Prognóstico , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
Biomed Pharmacother ; 123: 109780, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31901550


FAM83A is part of an 8-member protein family of unknown function and is reported to be a cancer-promoting and treatment-resistance factor in several cancers. However, its role in hepatocellular carcinoma (HCC) remains unclear. Analysis of the Cancer Genome Atlas (TCGA) showed that FAM83A mRNA expression is upregulated in HCC, as are the protein expression levels in both HCC cell lines and tissues. Clinical data have demonstrated that high FAM83A expression is positively correlated with poor progression-free survival time, thus suggesting its cancer-promoting potential. Functional analyses showed that FAM83A overexpression promoted HCC cell migration and invasion in vitro and suppressed sorafenib sensitivity. Inhibiting FAM83A reversed these results. A pulmonary metastasis model further confirmed that FAM83A promoted HCC cell metastasis in vivo. Mechanistic analyses indicated that FAM83A activated the PI3K/AKT signaling pathway, its downstream c-JUN protein, and epithelial-to-mesenchymal transition (EMT)-related protein levels, including downregulation of E-cadherin and upregulation of Vimentin and N-cadherin. Interestingly, c-JUN induced FAM83A expression by directly binding to its promoter region and thus forming a positive-feedback loop for FAM83A/PI3K/AKT/c-JUN. In conclusion, we demonstrated that FAM83A, as a cancer-metastasis promoter, accelerates migration, invasion and metastasis by activating the PI3K/AKT/c-JUN pathway and inducing its self-expression via feedback, thus forming a FAM83A/PI3K/AKT/c-JUN positive-feedback loop to activate EMT signaling and finally promote HCC migration, invasion and metastasis.

Carcinoma Hepatocelular/patologia , Movimento Celular , Retroalimentação Fisiológica , Neoplasias Hepáticas/patologia , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , Inativação Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico