Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 25(16): 4206-4217, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30690807

RESUMO

We present here a new class of niobium oxoclusters that are stabilized effectively by carboxylate ionic liquids. These functionalized ILs are designated as [TBA][LA], [TBA][PA], and [TBA][HPA] in this work, in which TBA represents tetrabutylammonium and LA, PA, and HPA refer to lactate, propionate, 3-hydroxypropionate anions, respectively. The as-synthesized Nb oxoclusters have been characterized by use of elemental analysis, NMR, IR, XRD, TGA, HRTEM. It was found that [TBA][LA]-stabilized Nb oxoclusters (Nb-OC@[TBA][LA]) are uniformly dispersed with an average particle size of 2-3 nm and afforded exceptionally high catalytic activity for the selective oxidation of various thioethers. The turnover number with Nb-OC@[TBA][LA] catalyst was over 56 000 at catalyst loading as low as 0.0033 mol % (1 ppm). Meantime, the catalyst also showed the high activity for the epoxidation of olefins and allylic alcohols by using only 0.065 mol % of catalyst (50 ppm). The characterization of 93 Nb NMR spectra revealed that the Nb oxoclusters underwent structural transformation in the presence of H2 O2 but regenerated to their initial state at the end of the reaction. In particular, the highly dispersed Nb oxoclusters can absorb a large amount of polar organic solvents and thus were swollen greatly, which exhibited "pseudo" liquid phase behavior, and enabled the substrate molecules to be highly accessible to the catalytic center of Nb oxocluster units.

2.
Chemistry ; 23(30): 7287-7296, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28378418

RESUMO

The efficient and environmentally benign epoxidation of allylic alcohols has been attained by using new kinds of monomeric peroxotantalate anion-functionalized ionic liquids (ILs=[P4,4,4,n ]3 [Ta(O)3 (η-O2 )], P4,4,4,n =quaternary phosphonium cation, n=4, 8, and 14), which have been developed and their structures determined accordingly. This work revealed the parent anions of the ILs underwent structural transformation in the presence of H2 O2 . The formed active species exhibited excellent catalytic activity, with a turnover frequency for [P4,4,4,4 ]3 [Ta(O)3 (η-O2 )] of up to 285 h-1 , and satisfactory recyclability in the epoxidation of various allylic alcohols under very mild conditions by using only one equivalent of hydrogen peroxide as an oxidant. NMR studies showed the reaction was facilitated through a hydrogen-bonding mechanism, in which the peroxo group (O-O) of the peroxotantalate anion served as the hydrogen-bond acceptor and hydroxyl group in the allylic alcohols served as the hydrogen-bond donor. This work demonstrates that simple monomeric peroxotantalates can catalyze epoxidation of allylic alcohols efficiently.

3.
Chem Rev ; 117(10): 6881-6928, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28358505

RESUMO

Temperature-responsive ionic liquids (ILs), their fundanmental behaviors, and catalytic applications were introduced, especially the concepts of upper critical solution temperature (UCST) and lower critical solution temperature (LCST). It is described that, during a catalytic reaction, they form a homogeneous mixture with the reactants and products at reaction temperature but separate from them afterward at ambient conditions. It is shown that this behavior offers an effective alternative approach to overcome gas/liquid-solid interface mass transfer limitations in many catalytic transformations. It should be noted that IL-based thermomorphic systems are rarely elaborated until now, especially in the field of catalytic applications. The aim of this article is to provide a comprehensive review about thermomorphic mixtures of an IL with H2O and/or organic compounds. Special focus is laid on their temperature dependence concerning UCST and LCST behavior, including systems with conventional ILs, metal-containing ILs, polymerized ILs, as well as the thermomorphic behavior induced via host-guest complexation. A wide range of applications using thermoregulated IL systems in chemical catalytic reactions as well as enzymatic catalysis were also demonstrated in detail. The conclusion is drawn that, due to their highly attractive behavior, thermoregulated ILs have already and will find more applications, not only in catalysis but also in other areas.

4.
Langmuir ; 32(51): 13746-13751, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27958759

RESUMO

The phase transfer of nanoparticles (NPs) from water to organic solvents by an amphiphilic room-temperature ionic liquid (IL) was reported. The geminal IL modified with Pluronic P123 stabilizes a variety of NPs of different size and nature, such as Pd, Au, Ag, and SiO2 NPs. Their phase transfer into a hydrophobic environment was realized by raising the temperature and adding salts (such as NaCl and KBr), both of which have a common effect of breaking the hydrogen bonds of the IL with H2O. A more straightforward method of using an organic solvent working as a hydrogen bond donor (such as butyl alcohol) was then proposed. In this case, NaCl was no longer required. To further apply this strategy to the organic solvents that are generally incapable of forming hydrogen bonds (e.g., toluene), a small quantity of benzoic acid was added to the organic phase. By forming hydrogen bonds from benzoic acid to the IL, an even more facile approach was provided. FT-IR confirmed the hydrogen bonding between them. The phase-transfer protocol does not rely on coordination bonding of ligands with a specific metal and is capable of the phase transfer of objects with large sizes and different natures. Thus, it has the potential for wide application.

5.
Phys Chem Chem Phys ; 17(9): 6406-14, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25656925

RESUMO

Metal nanoparticles embedded in hollow materials are important due to their wide applications in catalysis. In this work, we disclosed a nontraditional synthetic pathway to prepare silica hollow nanospheres by hydrothermal treatment in the presence of compressed CO2. Especially, the silica hollow nanospheres with an outer diameter of about 16 nm and an inner pore size of 7 nm were obtained using 1.0 MPa CO2. The formation mechanism of silica hollow nanospheres induced by CO2 was investigated by high-pressured UV/Vis spectroscopy. Moreover, gold nanoparticles (2.5 nm) embedded in the silica hollow nanospheres were prepared by a one-pot synthesis using HAuCl4 as a precursor. The current synthetic route of nano-catalysts was simple and facile, in which no etching agent was needed in the process of the hollow material preparation. Besides, this nano-catalyst showed an excellent catalytic performance in epoxidation of styrene with high conversion (82.2%) and selectivity (90.2%) toward styrene oxide, as well as in the selective oxidation of ethylbenzene with good conversion (26.6%) and selectivity (87.8%) toward acetophenone. Moreover, the Au nanoparticles (AuNPs) embedded in silica hollow nanospheres exhibited an excellent recyclability in both the oxidation reactions.


Assuntos
Dióxido de Carbono/química , Ouro/química , Nanopartículas Metálicas , Dióxido de Silício/química , Catálise , Microscopia Eletrônica de Transmissão , Oxirredução
6.
J Colloid Interface Sci ; 415: 117-26, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24267338

RESUMO

Ionic liquid (1-butyl-2,3-dimethylimidazolium acetate, [BMMIm]OAc)-Pluronic P123 mixed micelle stabilized water-soluble Ni nanoparticles were characterized by UV-vis, XRD, XPS and TEM and then employed for catalytic hydrogenation. It was demonstrated that the mixed-micelle stabilized Ni NPs showed excellent catalytic performance for the selective hydrogenation of CC and nitro compounds in the aqueous phase under very mild reaction conditions, and also the Ni NPs catalysts can be recycled at least for eight times without significant decrease in catalytic activity. The results of characterization revealed that the mixed micelle-stabilized Ni NPs catalysts were highly dispersed in aqueous phases even after five catalytic recycles. In addition, adding ionic liquid ([BMMIm]OAc) can affect the micelle structure of P123 solutions and thus afford an additional steric protection from aggregation of Ni NPs, resulting in enhancing stability and catalytic activity of Ni NPs.


Assuntos
Imidazóis/química , Líquidos Iônicos/química , Nanopartículas Metálicas/química , Níquel/química , Poloxaleno/química , Alcenos/química , Catálise , Reutilização de Equipamento , Hidrogenação , Nanopartículas Metálicas/ultraestrutura , Micelas , Microscopia Eletrônica de Transmissão , Nitrocompostos/química , Espectroscopia Fotoeletrônica , Água/química
7.
Zhong Yao Cai ; 36(12): 2034-8, 2013 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-25090692

RESUMO

OBJECTIVE: To establish the fingerprint analysis method of Ganershu intermediate by HPLC. METHODS: An analysis was performed on a sunFire C18 (4. 6 mm x 250 mm, 5 microm) column with acetonitrile-0.1% phosphate aqueous as the mobile phase by gradient elution. The flow rate was 1.0 mL/min, the detection wavelength was 320 nm and detection time was 80 min. The column temperature was 35 degrees C. In the recorded chromatogram of Ganershu intermediate, neohesperidin was used as reference substance, and RSD of the relative retention time and the relative peak areas of all peaks compared with its peak were measured. The similarity of 10 batches of Ganershu intermediate was appraised by the similarity evaluation system. Using the external standard method, the contents of chlorogenic acid, neohesperidin and naringin were determined in 10 batches of intermediate. RESULTS: Tweenty-three peaks were separated on HPLC fingerprint in Ganershu intermediate, degree of similarity of fingerprint for ten batches of Ganershu intermediate were greater than 0.90. Three compounds' contents were almost the same in each batch of intermediate sample. CONCLUSION: The method is stable, accurate, reliable and can be used as a quality control for Ganershu intermediate and sustained-release capsules.


Assuntos
Ácido Clorogênico/análise , Medicamentos de Ervas Chinesas/química , Flavanonas/análise , Hesperidina/análogos & derivados , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/isolamento & purificação , Hesperidina/análise , Plantas Medicinais/química , Controle de Qualidade , Reprodutibilidade dos Testes
8.
Chemistry ; 19(6): 2059-66, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23255466

RESUMO

The use of transition-metal nanoparticles/ionic liquid (IL) as a thermoregulated and recyclable catalytic system for hydrogenation has been investigated under mild conditions. The functionalized ionic liquid was composed of poly(ethylene glycol)-functionalized alkylimidazolium as the cation and tris(meta-sulfonatophenyl)phosphine ([P(C(6)H(4)-m-SO(3))(3)](3-)) as the anion. Ethyl acetate was chosen as the thermomorphic solvent to avoid the use of toxic organic solvents. Due to a cooperative effect regulated by both the cation and anion of the ionic liquid, the nanocatalysts displayed distinguished temperature-dependent phase behavior and excellent catalytic activity and selectivity, coupled with high stability. In the hydrogenation of α,ß-unsaturated aldehydes, the ionic-liquid-stabilized palladium and rhodium nanoparticles exhibited higher selectivity for the hydrogenation of the C=C bonds than commercially available catalysts (Pd/C and Rh/C). We believe that the anion of the ionic liquid, [P(C(6)H(4)-m-SO(3))(3)](3-), plays a role in changing the surrounding electronic characteristics of the nanoparticles through its coordination capacity, whereas the poly(ethylene glycol)-functionalized alkylimidazolium cation is responsible for the thermomorphic properties of the nanocatalyst in ethyl acetate. The present catalytic systems can be employed for the hydrogenation of a wide range of substrates bearing different functional groups. The catalysts could be easily separated from the products by thermoregulated phase separation and efficiently recycled ten times without significant changes in their catalytic activity.

9.
Phys Chem Chem Phys ; 13(30): 13492-500, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21566847

RESUMO

The highly water-soluble palladium nanoparticles (NPs) were synthesized by using the amphiphilic poly(ethylene glycol)-functionalized dicationic imidazolium-based ionic liquid (C(12)Im-PEG IL) as a stabilizing agent. The aqueous dispersed palladium NPs in the range of 1.9 ± 0.3 nm were observed by transmission electron microscopy (TEM). The physicochemical properties of C(12)Im-PEG IL in aqueous phase have been characterized by electrical conductivity, surface tension and dynamic light scattering (DLS) measurements. It was demonstrated that the amphiphilic ionic liquid can form micelles above its critical micelle concentration (CMC) in aqueous solution and the micelles played a crucial role in stabilizing the palladium NPs and thus promoted catalytic hydrogenation. Furthermore, the dicationic ionic liquid can also act as a gemini surfactant and generated emulsion between hydrophobic substrates and the catalytic aqueous phase during the reaction. The aqueous dispersed palladium NPs showed efficient activity for the catalytic hydrogenation of various substrates under very mild conditions and the stabilizing Pd(0) nanoparticles (NPs) can be reused at least eight times with complete conservation of activity.

10.
Chem Asian J ; 5(5): 1178-84, 2010 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-20340156

RESUMO

Nickel nanoparticles (NPs) well-dispersed in the aqueous phase were conveniently prepared by reducing nickel(II) salt with hydrazine in the presence of the functionalized ionic liquid 1-(3-aminopropyl)-2,3-dimethylimidazolium bromide. UV/Vis spectroscopy, elemental analysis, thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) show the presence of a weak interaction of the functionalized ionic liquid with Ni(II) and Ni(0) complexes. The face-centered cubic structure of the Ni(0) NPs was confirmed by X-ray diffraction (XRD) characterization. Transmission electron microscopy (TEM) images reveal that smaller Ni(0) particles of approximately 6-7 nm average diameter assemble to give larger, blackberry-shaped particles with an average diameter of around 35 nm. The Ni NPs were employed as highly efficient catalysts for the selective hydrogenation of C=C double bonds in the aqueous phase under mild reaction conditions (40-90 degrees C at 1.0-3.0 MPa), and the Ni(0) nanocatalysts in the aqueous phase are stable enough to be reused at least seven times without significant loss of catalytic activity during subsequent reuse cycles.

11.
Langmuir ; 26(4): 2505-13, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20039597

RESUMO

The preparation, characterization, and catalytic properties of water-soluble palladium nanoparticles stabilized by the functionalized-poly(ethylene glycol) as a protective ligand were demonstrated for aerobic oxidation of alcohols in aqueous phase. UV/vis spectra and X-ray photoelectron spectroscopy (XPS) proved that there was an electronic interaction between the bidentate nitrogen ligand and palladium atoms. Transmission electron microscopy and XPS analysis showed that the particle size and surface properties of the generated palladium nanoparticles can be controlled by varying the amount of protective ligand and the kinds of reducing agents. It was found that both the size and surface properties of palladium nanoparticles played very important roles in affecting catalytic performance. The stabilized metallic palladium nanoparticles were proven to be the active centers for benzyl alcohol oxidation in the present system, and the water-soluble Pd nanocatalysts can also be extended to the selective oxidation of various alcohols.


Assuntos
Álcoois/química , Nanopartículas Metálicas/química , Paládio/química , Polietilenoglicóis/química , Água/química , Oxirredução , Tamanho da Partícula , Solubilidade , Propriedades de Superfície
12.
Chem Commun (Camb) ; (10): 1038-40, 2007 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-17325798

RESUMO

Ordered mesoporous carbon containing molecular-level dispersed Pd clusters in the carbon walls can be synthesized by the nanocasting pathway, which shows high selectivity for the oxidation of alcohols to aldehydes.

13.
Chemistry ; 12(12): 3401-9, 2006 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-16453367

RESUMO

The oxidation of cycloalkanes or alkylarenes with molecular oxygen and acetaldehyde as sacrificial co-reductant occurs efficiently in compressed (supercritical) carbon dioxide (scCO2) under mild multiphase conditions. No catalyst is required and high-pressure ATR-FTIR online measurements show that a radical reaction pathway is heterogeneously initiated by the stainless steel of the reactor walls. For secondary carbon atoms, high ketone to alcohol ratios are observed (3.5-7.9), most probably due to fast consecutive oxidation of alcoholic intermediates. Since C--C scission reactions are detected only to a very small extent, tertiary carbon atoms are transformed into the corresponding alcohols with high selectivity. Detailed analysis of the product distributions and other mechanistic evidence suggest that acetaldehyde acts not only as the sacrificial oxygen acceptor, but also as an efficient H-atom donor for peroxo and oxo radicals and as a crucial reductant for hydroperoxo intermediates. In comparison to other inert gases such as compressed N2 or Ar, the use of carbon dioxide was shown to increase the yields of alkane oxygenates under identical reaction conditions.

15.
Chemistry ; 8(24): 5593-600, 2002 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-12693041

RESUMO

The effects of pressure and of the composition of the CO2/ethanol mixed solvent in the critical region on the kinetics of the decomposition of 2,2'-azobis(isobutyronitrile) (AIBN) were studied at 333.15 K. The rate constants (kd) in the mixed solvent far from the critical point and in liquid n-hexane and ethanol were also determined for comparison. It was found that kd is very sensitive to pressure in the mixed solvent near the critical point. However, in the mixed solvent outside the critical region kd is nearly independent of pressure. Interestingly, kd in the mixed solvent in the critical region can be higher than that in ethanol at the same temperature, suggesting that no significant enhancement in the reaction rate by a small pressure change in the critical region of the mixed solvent can be achieved by changing the composition of the liquid solvent in the traditional way. Transition-state theory can predict kd in the mixed solvent far from the critical point and in the liquid solvents well. However, it cannot predict kd in the mixed solvent in the critical region. The special intermolecular interaction between the solvent and the reaction species may contribute to this interesting phenomenon. This work also shows that if pure CO2 or ethanol are used as solvents, the reaction cannot be carried out in the critical region of the solvents at the desired temperature, while it can be conducted in the critical region of the mixed solvent of suitable composition, where the solvent is highly compressible.

16.
Chemistry ; 8(22): 5107-11, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12613028

RESUMO

The effects of two polar co-solvents, chlorodifluoromethane and acetone, on the solubility and enthalpy of a solution of 1,4-naphthoquinone in supercritical (SC) CO2 were studied. We found that the dissolution process becomes less exothermic in the presence of the co-solvents relative to that in pure CO2, although the solubility is enhanced significantly by the co-solvents. This indicates that the increase in the solubility by adding co-solvents results from the increase of the entropy of solution. On the basis of the unexpected results we propose a new mechanism for the solubility enhancement of the solute by the co-solvents in supercritical fluids (SCF); this should be applicable to cases in which the local density of the SC solvent around the solute and the co-solvent is larger, and the co-solvent associates preferentially with the solute. The results are also very important for the understanding of other fundamental questions of SCF science, such as the effect of co-solvents on the thermodynamic and kinetic properties of the reactions in SCFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA