Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-31668584

RESUMO

BACKGROUND: Epidemiological studies have linked lifestyle, cardiometabolic, reproductive, developmental, and inflammatory factors to the risk of colorectal cancer. However, which specific factors affect risk and the strength of these effects are unknown. We aimed to examine the relationship between potentially modifiable risk factors and colorectal cancer. METHODS: We used a random-effects model to examine the relationship between 39 potentially modifiable risk factors and colorectal cancer in 26 397 patients with colorectal cancer and 41 481 controls (ie, people without colorectal cancer). These population data came from a genome-wide association study of people of European ancestry, which was amended to exclude UK BioBank data. In the model, we used genetic variants as instruments via two-sample mendelian randomisation to limit bias from confounding and reverse causation. We calculated odds ratios per genetically predicted SD unit increase in each putative risk factor (ORSD) for colorectal cancer risk. We did mendelian randomisation Egger regressions to identify evidence of potential violations of mendelian randomisation assumptions. A Bonferroni-corrected threshold of p=1·3 × 10-3 was considered significant, and p values less than 0·05 were considered to be suggestive of an association. FINDINGS: No putative risk factors were significantly associated with colorectal cancer risk after correction for multiple testing. However, suggestive associations with increased risk were noted for genetically predicted body fat percentage (ORSD 1·14 [95% CI 1·03-1·25]; p=0·0086), body-mass index (1·09 [1·01-1·17]; p=0·023), waist circumference (1·13 [1·02-1·26]; p=0·018), basal metabolic rate (1·10 [1·03-1·18]; p=0·0079), and concentrations of LDL cholesterol (1·14 [1·04-1·25]; p=0·0056), total cholesterol (1·09 [1·01-1·18]; p=0·025), circulating serum iron (1·17 [1·00-1·36]; p=0·049), and serum vitamin B12 (1·21 [1·04-1·42]; p=0·016), although potential pleiotropy among genetic variants used as instruments for vitamin B12 constrains the finding. A suggestive association was also noted between adult height and increased risk of colorectal cancer (ORSD 1·04 [95% CI 1·00-1·08]; p=0·032). Low blood selenium concentration had a suggestive association with decreased risk of colorectal cancer (ORSD 0·85 [95% CI 0·75-0·96]; p=0·0078) based on a single variant, as did plasma concentrations of interleukin-6 receptor subunit α (also based on a single variant; 0·98 [0·96-1·00]; p=0·035). Risk of colorectal cancer was not associated with any sex hormone or reproductive factor, serum calcium, or circulating 25-hydroxyvitamin D concentrations. INTERPRETATION: This analysis identified several modifiable targets for primary prevention of colorectal cancer, including lifestyle, obesity, and cardiometabolic factors, that should inform public health policy. FUNDING: Cancer Research UK, UK Medical Research Council Human Genetics Unit Centre, DJ Fielding Medical Research Trust, EU COST Action, and the US National Cancer Institute.

2.
Neuro Oncol ; 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31665421

RESUMO

BACKGROUND: The etiological basis of glioma is poorly understood. We have used genetic markers in a Mendelian Randomisation (MR) framework to examine if lifestyle, cardiometabolic and inflammatory factors influence the risk of glioma. This methodology reduces bias from confounding and is not affected by reverse causation. METHODS: We identified genetic instruments for 37 potentially modifiable risk factors and evaluated their association with glioma risk using data from a genome-wide association study of 12,488 glioma patients and 18,169 controls. We used the estimated odds ratio of glioma associated with each of the genetically defined traits to infer evidence for a causal relationship with the following exposures: lifestyle and dietary factors (height, plasma IGF-1, blood carnitine, blood methionine, blood selenium, blood zinc, circulating adiponectin, circulating carotenoids, iron status, serum calcium, vitamin [A1, B12, B6, E and 25-hydroxyvitamin D], fatty acids levels [mono-unsaturated, omega-3 and omega-6] and circulating fetuin-A); cardiometabolic factors (birth weight, HDL cholesterol, LDL cholesterol, total cholesterol, total triglycerides, basal metabolic rate, body fat percentage, body mass index, fasting glucose, fasting proinsulin, HbA1C levels, diastolic and systolic blood pressure, waist circumference, waist-to-hip ratio) were included; inflammatory factors (C-reactive protein (CRP), plasma IL-6 sRa and serum IgE). RESULTS: After correction for the testing of multiple potential risk factors and excluding associations driven by one single nucleotide polymorphism (SNP) no significant association with glioma risk was observed (i.e. PCorrected > 0.05). CONCLUSIONS: This study did not provide evidence supporting any of the 37 factors examined as having a significant influence on glioma risk.

3.
Blood ; 134(12): 960-969, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31395603

RESUMO

Estimating familial cancer risks is clinically important in being able to discriminate between individuals in the population at differing risk for malignancy. To gain insight into the familial risk for the different hematological malignancies and their possible inter-relationship, we analyzed data on more than 16 million individuals from the Swedish Family-Cancer Database. After identifying 153 115 patients diagnosed with a primary hematological malignancy, we quantified familial relative risks (FRRs) by calculating standardized incident ratios (SIRs) in 391 131 of their first-degree relatives. The majority of hematological malignancies showed increased FRRs for the same tumor type, with the highest FRRs being observed for mixed cellularity Hodgkin lymphoma (SIR, 16.7), lymphoplasmacytic lymphoma (SIR, 15.8), and mantle cell lymphoma (SIR, 13.3). There was evidence for pleiotropic relationships; notably, chronic lymphocytic leukemia was associated with an elevated familial risk for other B-cell tumors and myeloproliferative neoplasms. Collectively, these data provide evidence for shared etiological factors for many hematological malignancies and provide information for identifying individuals at increased risk, as well as informing future gene discovery initiatives.

4.
Hum Genomics ; 13(1): 37, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429796

RESUMO

BACKGROUND: While genome-wide association studies (GWAS) of multiple myeloma (MM) have identified variants at 23 regions influencing risk, the genes underlying these associations are largely unknown. To identify candidate causal genes at these regions and search for novel risk regions, we performed a multi-tissue transcriptome-wide association study (TWAS). RESULTS: GWAS data on 7319 MM cases and 234,385 controls was integrated with Genotype-Tissue Expression Project (GTEx) data assayed in 48 tissues (sample sizes, N = 80-491), including lymphocyte cell lines and whole blood, to predict gene expression. We identified 108 genes at 13 independent regions associated with MM risk, all of which were in 1 Mb of known MM GWAS risk variants. Of these, 94 genes, located in eight regions, had not previously been considered as a candidate gene for that locus. CONCLUSIONS: Our findings highlight the value of leveraging expression data from multiple tissues to identify candidate genes responsible for GWAS associations which provide insight into MM tumorigenesis. Among the genes identified, a number have plausible roles in MM biology, notably APOBEC3C, APOBEC3H, APOBEC3D, APOBEC3F, APOBEC3G, or have been previously implicated in other malignancies. The genes identified in this TWAS can be explored for follow-up and validation to further understand their role in MM biology.

5.
Blood Cancer J ; 9(8): 60, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387987

RESUMO

To gain insight into multiple myeloma (MM) tumorigenesis, we analyzed the mutational signatures in 874 whole-exome and 850 whole-genome data from the CoMMpass Study. We identified that coding and non-coding regions are differentially dominated by distinct single-nucleotide variant (SNV) mutational signatures, as well as five de novo structural rearrangement signatures. Mutational signatures reflective of different principle mutational processes-aging, defective DNA repair, and apolipoprotein B editing complex (APOBEC)/activation-induced deaminase activity-characterize MM. These mutational signatures show evidence of subgroup specificity-APOBEC-attributed signatures associated with MAF translocation t(14;16) and t(14;20) MM; potentially DNA repair deficiency with t(11;14) and t(4;14); and aging with hyperdiploidy. Mutational signatures beyond that associated with APOBEC are independent of established prognostic markers and appear to have relevance to predicting high-risk MM.

6.
Nat Commun ; 10(1): 3615, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399598

RESUMO

Genome-wide association studies have provided evidence for inherited genetic predisposition to chronic lymphocytic leukemia (CLL). To gain insight into the mechanisms underlying CLL risk we analyze chromatin accessibility, active regulatory elements marked by H3K27ac, and DNA methylation at 42 risk loci in up to 486 primary CLLs. We identify that risk loci are significantly enriched for active chromatin in CLL with evidence of being CLL-specific or differentially regulated in normal B-cell development. We then use in situ promoter capture Hi-C, in conjunction with gene expression data to reveal likely target genes of the risk loci. Candidate target genes are enriched for pathways related to B-cell development such as MYC and BCL2 signalling. At 14 loci the analysis highlights 63 variants as the probable functional basis of CLL risk. By integrating genetic and epigenetic information our analysis reveals novel insights into the relationship between inherited predisposition and the regulatory chromatin landscape of CLL.

8.
J Mol Biol ; 431(13): 2460-2466, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31075275

RESUMO

PhyreRisk is an open-access, publicly accessible web application for interactively bridging genomic, proteomic and structural data facilitating the mapping of human variants onto protein structures. A major advance over other tools for sequence-structure variant mapping is that PhyreRisk provides information on 20,214 human canonical proteins and an additional 22,271 alternative protein sequences (isoforms). Specifically, PhyreRisk provides structural coverage (partial or complete) for 70% (14,035 of 20,214 canonical proteins) of the human proteome, by storing 18,874 experimental structures and 84,818 pre-built models of canonical proteins and their isoforms generated using our in house Phyre2. PhyreRisk reports 55,732 experimentally, multi-validated protein interactions from IntAct and 24,260 experimental structures of protein complexes. Another major feature of PhyreRisk is that, rather than presenting a limited set of precomputed variant-structure mapping of known genetic variants, it allows the user to explore novel variants using, as input, genomic coordinates formats (Ensembl, VCF, reference SNP ID and HGVS notations) and Human Build GRCh37 and GRCh38. PhyreRisk also supports mapping variants using amino acid coordinates and searching for genes or proteins of interest. PhyreRisk is designed to empower researchers to translate genetic data into protein structural information, thereby providing a more comprehensive appreciation of the functional impact of variants. PhyreRisk is freely available at http://phyrerisk.bc.ic.ac.uk.

9.
Neuro Oncol ; 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31102405

RESUMO

BACKGROUND: Primary central nervous system lymphoma (PCNSL) is a rare form of extra-nodal non-Hodgkin lymphoma. PCNSL is a distinct subtype of non-Hodgkin lymphoma, with over 95% of tumors belonging to the diffuse large B-cell lymphoma (DLBCL) group. We have conducted a genome-wide association study (GWAS) on immunocompetent patients to address the possibility that common genetic variants influence the risk of developing PCNSL. METHODS: We performed a meta-analysis of two new genome-wide association studies of PCNSL totaling 475 cases and 1,134 controls of European ancestry. To increase genomic resolution, we imputed >10 million single-nucleotide polymorphisms (SNPs) using the 1000 Genomes Project combined with UK10K as reference. In addition we performed a transcription factor binding disruption analysis and investigated the patterns of local chromatin patterns by capture Hi-C data. RESULTS: We identified independent risk loci at 3p22.1 (rs41289586, ANO10, P = 2.17 x 10-8) and 6p25.3 near EXOC2 (rs116446171, P = 1.95 x 10-13). In contrast the lack of an association between rs41289586 and DLBCL, suggests distinct germline predisposition to PCNSL and DLBCL. We found looping chromatin interactions between non-coding regions at 6p25.3 (rs11646171) with the IRF4 promoter and at 8q24.21 (rs13254990) with the MYC promoter, both genes with strong relevance to B-cell tumorigenesis. CONCLUSION: To our knowledge this is the first study providing insight into the genetic predisposition to PCNSL. Our findings represent an important step in defining the contribution of common genetic variation to the risk of developing PCNSL.

10.
J Thorac Oncol ; 14(8): 1360-1369, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31009812

RESUMO

INTRODUCTION: Inherited susceptibility to lung cancer risk in never-smokers is poorly understood. The major reason for this gap in knowledge is that this disease is relatively uncommon (except in Asians), making it difficult to assemble an adequate study sample. In this study we conducted a genome-wide association study on the largest, to date, set of European-descent never-smokers with lung cancer. METHODS: We conducted a two-phase (discovery and replication) genome-wide association study in never-smokers of European descent. We further augmented the sample by performing a meta-analysis with never-smokers from the recent OncoArray study, which resulted in a total of 3636 cases and 6295 controls. We also compare our findings with those in smokers with lung cancer. RESULTS: We detected three genome-wide statistically significant single nucleotide polymorphisms rs31490 (odds ratio [OR]: 0.769, 95% confidence interval [CI]: 0.722-0.820; p value 5.31 × 10-16), rs380286 (OR: 0.770, 95% CI: 0.723-0.820; p value 4.32 × 10-16), and rs4975616 (OR: 0.778, 95% CI: 0.730-0.829; p value 1.04 × 10-14). All three mapped to Chromosome 5 CLPTM1L-TERT region, previously shown to be associated with lung cancer risk in smokers and in never-smoker Asian women, and risk of other cancers including breast, ovarian, colorectal, and prostate. CONCLUSIONS: We found that genetic susceptibility to lung cancer in never-smokers is associated to genetic variants with pan-cancer risk effects. The comparison with smokers shows that top variants previously shown to be associated with lung cancer risk only confer risk in the presence of tobacco exposure, underscoring the importance of gene-environment interactions in the etiology of this disease.

11.
Int J Cancer ; 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30963577

RESUMO

Glioma incidence is highest in non-Hispanic Whites, and to date, glioma genome-wide association studies (GWAS) to date have only included European ancestry (EA) populations. African Americans and Hispanics in the US have varying proportions of EA, African (AA) and Native American ancestries (NAA). It is unknown if identified GWAS loci or increased EA is associated with increased glioma risk. We assessed whether EA was associated with glioma in African Americans and Hispanics. Data were obtained for 832 cases and 675 controls from the Glioma International Case-Control Study and GliomaSE Case-Control Study previously estimated to have <80% EA, or self-identify as non-White. We estimated global and local ancestry using fastStructure and RFMix, respectively, using 1,000 genomes project reference populations. Within groups with ≥40% AA (AFR≥0.4 ), and ≥15% NAA (AMR≥0.15 ), genome-wide association between local EA and glioma was evaluated using logistic regression conditioned on global EA for all gliomas. We identified two regions (7q21.11, p = 6.36 × 10-4 ; 11p11.12, p = 7.0 × 10-4 ) associated with increased EA, and one associated with decreased EA (20p12.13, p = 0.0026) in AFR≥0.4 . In addition, we identified a peak at rs1620291 (p = 4.36 × 10-6 ) in 7q21.3. Among AMR≥0.15 , we found an association between increased EA in one region (12q24.21, p = 8.38 × 10-4 ), and decreased EA in two regions (8q24.21, p = 0. 0010; 20q13.33, p = 6.36 × 10-4 ). No other significant associations were identified. This analysis identified an association between glioma and two regions previously identified in EA populations (8q24.21, 20q13.33) and four novel regions (7q21.11, 11p11.12, 12q24.21 and 20p12.13). The identifications of novel association with EA suggest regions to target for future genetic association studies.

13.
Ann Hum Genet ; 83(4): 231-238, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30768683

RESUMO

Genomic regions of homozygosity (ROH), detectable in outbred populations, have been implicated as determinants of inherited risk. To examine whether ROH is associated with risk of multiple myeloma (MM), we performed whole-genome homozygosity analysis using single-nucleotide polymorphism genotype data from 2,282 MM cases and 5,197 controls, with replication in an additional 878 MM cases and 7,083 controls. Globally, the distribution of ROH between cases and controls was not significantly different. However, one ROH at chromosome 9q21, harboring the B-cell transcription factor gene KLF9, showed evidence of a consistent association and may therefore warrant further investigation as a candidate risk factor for MM. Overall, our analysis provides little support for a homozygosity signature being a significant factor in MM risk.

14.
Mol Aspects Med ; 69: 41-47, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30710596

RESUMO

Colorectal cancer (CRC) is the third most common cancer in economically developed countries and a major cause of cancer-related mortality. The importance of lifestyle and diet as major determinants of CRC risk is suggested by differences in CRC incidence between countries and in migration studies. Previous observational epidemiological studies have identified associations between modifiable environmental risk factors and CRC, but these studies can be susceptible to reverse causation and confounding, and their results can therefore conflict. Mendelian randomisation (MR) analysis represents an approach complementary to conventional observational studies examining associations between exposures and disease. The MR strategy employs allelic variants as instrumental variables (IVs), which act as proxies for non-genetic exposures. These allelic variants are randomly assigned during meiosis and can therefore inform on life-long exposure, whilst not being subject to reverse causation. In previous studies MR frameworks have associated several modifiable factors with CRC risk, including adiposity, hyperlipidaemia, fatty acid profile and alcohol consumption. In this review we detail the use of MR to investigate and discover CRC risk factors, and its future applications.

15.
Cancer Res ; 79(8): 2065-2071, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30709929

RESUMO

Genome-wide association studies (GWAS) have so far identified 25 loci associated with glioma risk, with most showing specificity for either glioblastoma (GBM) or non-GBM tumors. The majority of these GWAS susceptibility variants reside in noncoding regions and the causal genes underlying the associations are largely unknown. Here we performed a transcriptome-wide association study to search for novel risk loci and candidate causal genes at known GWAS loci using Genotype-Tissue Expression Project (GTEx) data to predict cis-predicted gene expression in relation to GBM and non-GBM risk in conjunction with GWAS summary statistics on 12,488 glioma cases (6,183 GBM and 5,820 non-GBM) and 18,169 controls. Imposing a Bonferroni-corrected significance level of P < 5.69 × 10-6, we identified 31 genes, including GALNT6 at 12q13.33, as a candidate novel risk locus for GBM (mean Z = 4.43; P = 5.68 × 10-6). GALNT6 resides at least 55 Mb away from any previously identified glioma risk variant, while all other 30 significantly associated genes were located within 1 Mb of known GWAS-identified loci and were not significant after conditioning on the known GWAS-identified variants. These data identify a novel locus (GALNT6 at 12q13.33) and 30 genes at 12 known glioma risk loci associated with glioma risk, providing further insights into glioma tumorigenesis. SIGNIFICANCE: This study identifies new genes associated with glioma risk, increasing understanding of how these tumors develop.

17.
Nat Commun ; 10(1): 419, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664635

RESUMO

The original version of this Article contained an error in the spelling of a member of the PRACTICAL Consortium, Manuela Gago-Dominguez, which was incorrectly given as Manuela Gago Dominguez. This has now been corrected in both the PDF and HTML versions of the Article. Furthermore, in the original HTML version of this Article, the order of authors within the author list was incorrect. The PRACTICAL consortium was incorrectly listed after Richard S. Houlston and should have been listed after Nora Pashayan. This error has been corrected in the HTML version of the Article; the PDF version was correct at the time of publication.

18.
Sci Rep ; 9(1): 309, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670737

RESUMO

Little is known about the causes of meningioma. Obesity and obesity-related traits have been reported in several epidemiological observational studies to be risk factors for meningioma. We performed an analysis of genetic variants associated with obesity-related traits to assess the relationship with meningioma risk using Mendelian randomization (MR), an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations. We considered 11 obesity-related traits, identified genetic instruments for these factors, and assessed their association with meningioma risk using data from a genome-wide association study comprising 1,606 meningioma patients and 9,823 controls. To evaluate the causal relationship between the obesity-related traits and meningioma risk, we consider the estimated odds ratio (OR) of meningioma for each genetic instrument. We identified positive associations between body mass index (odds ratio [ORSD] = 1.27, 95% confidence interval [CI] = 1.03-1.56, P = 0.028) and body fat percentage (ORSD = 1.28, 95% CI = 1.01-1.63, P = 0.042) with meningioma risk, albeit non-significant after correction for multiple testing. Associations for basal metabolic rate, diastolic blood pressure, fasting glucose, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, systolic blood pressure, total cholesterol, triglycerides and waist circumference with risk of meningioma were non-significant. Our analysis provides additional support for obesity being associated with an increased risk of meningioma.

19.
J Natl Cancer Inst ; 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30649440

RESUMO

Background: Constitutional loss of function (LOF) single nucleotide polymorphisms (SNPs) in pattern recognition receptors FPR1, TLR3, and TLR4 have previously been reported to predict oxaliplatin benefit in colorectal cancer. Confirmation of this association could substantially improve patient stratification. Methods: We performed a retrospective biomarker analysis of the Short Course in Oncology Therapy (SCOT) and COIN/COIN-B trials. Participant status for LOF variants in FPR1 (rs867228), TLR3 (rs3775291), and TLR4 (rs4986790/rs4986791) was determined by genotyping array or genotype imputation. Associations between LOF variants and disease-free survival (DFS) and overall survival (OS) were analyzed by Cox regression, adjusted for confounders, using additive, dominant, and recessive genetic models. All statistical tests were two-sided. Results: Our validation study populations included 2929 and 1948 patients in the SCOT and COIN/COIN-B cohorts, respectively, of whom 2728 and 1672 patients had functional status of all three SNPs determined. We found no evidence of an association between any SNP and DFS in the SCOT cohort, or with OS in either cohort, irrespective of the type of model used. This included models for which an association was previously reported for rs867228 (recessive model, multivariable-adjusted hazard ratio [HR] for DFS in SCOT = 1.19, 95% confidence interval [CI] = 0.99 to 1.45, P = .07; HR for OS in COIN/COIN-B = 0.92, 95% CI = 0.63 to 1.34, P = .66), and rs4986790 (dominant model, multivariable-adjusted HR for DFS in SCOT = 0.86, 95% CI = 0.65 to 1.13, P = .27; HR for OS in COIN/COIN-B = 1.08, 95% CI = 0.90 to 1.31, P = .40). Conclusion: In this prespecified analysis of two large clinical trials, we found no evidence that constitutional LOF SNPs in FPR1, TLR3, or TLR4 are associated with differential benefit from oxaliplatin. Our results suggest these SNPs are unlikely to be clinically useful biomarkers.

20.
Blood Adv ; 3(1): 21-32, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30606723

RESUMO

The identification of driver mutations is fundamental to understanding oncogenesis. Although genes frequently mutated in B-cell lymphoma have been identified, the search for driver mutations has largely focused on the coding genome. Here we report an analysis of the noncoding genome using whole-genome sequencing data from 117 patients with B-cell lymphoma. Using promoter capture Hi-C data in naive B cells, we define cis-regulatory elements, which represent an enriched subset of the noncoding genome in which to search for driver mutations. Regulatory regions were identified whose mutation significantly alters gene expression, including copy number variation at cis-regulatory elements targeting CD69, IGLL5, and MMP14, and single nucleotide variants in a cis-regulatory element for TPRG1 We also show the commonality of pathways targeted by coding and noncoding mutations, exemplified by MMP14, which regulates Notch signaling, a pathway important in lymphomagenesis and whose expression is associated with patient survival. This study provides an enhanced understanding of lymphomagenesis and describes the advantages of using chromosome conformation capture to decipher noncoding mutations relevant to cancer biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA