Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Lancet Planet Health ; 5(9): e579-e587, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34508679

RESUMO

BACKGROUND: Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world. METHODS: For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000-16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25°â€ˆ× 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated. FINDINGS: 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 µg/m3 increase in the 3-day moving average (lag 0-2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016-1·022) for all-cause mortality, 1·017 (1·012-1·021) for cardiovascular mortality, and 1·019 (1·013-1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48-0·75) of all-cause deaths, 0·55% (0·43-0·67) of cardiovascular deaths, and 0·64% (0·50-0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period. INTERPRETATION: Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires. FUNDING: Australian Research Council, Australian National Health & Medical Research Council.


Assuntos
Poluentes Atmosféricos , Incêndios Florestais , Poluentes Atmosféricos/análise , Austrália , Exposição Ambiental , Material Particulado/análise
2.
Lancet Planet Health ; 5(7): e415-e425, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34245712

RESUMO

BACKGROUND: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. METHODS: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5°â€ˆ× 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature-mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature-mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. FINDINGS: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967-5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58-11·07) of all deaths (8·52% [6·19-10·47] were cold-related and 0·91% [0·56-1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60-87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000-03 to 2016-19, the global cold-related excess death ratio changed by -0·51 percentage points (95% eCI -0·61 to -0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13-0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. INTERPRETATION: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios. FUNDING: Australian Research Council and the Australian National Health and Medical Research Council.


Assuntos
Temperatura Baixa , Temperatura Alta , Austrália , Mudança Climática , Temperatura
3.
BMC Public Health ; 21(1): 300, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546655

RESUMO

BACKGROUND: Few studies have considered aircraft noise annoyance and noise sensitivity in analyses of the health effects of aircraft noise, especially in relation to medication use. This study aims to investigate the moderating and mediating role of these two factors in the relationship between aircraft noise levels and medication use among 5860 residents of ten European airports included in the HYENA and DEBATS studies. METHODS: Information on aircraft noise annoyance, noise sensitivity, medication use, and demographic, socio-economic and lifestyle factors was collected during a face-to-face interview at home. Medication was coded according to the Anatomical Therapeutic Chemical (ATC) classification. Outdoor aircraft noise exposure was estimated by linking the participant's home address to noise contours using Geographical Information Systems (GIS) methods. Logistic regressions with adjustment for potential confounding factors were used. In addition, Baron and Kenny's recommendations were followed to investigate the moderating and mediating effects of aircraft noise annoyance and noise sensitivity. RESULTS: A significant association was found between aircraft noise levels at night and antihypertensive medication only in the UK (OR = 1.43, 95%CI 1.19-1.73 for a 10 dB(A)-increase in Lnight). No association was found with other medications. Aircraft noise annoyance was significantly associated with the use of antihypertensive medication (OR = 1.33, 95%CI 1.14-1.56), anxiolytics (OR = 1.48, 95%CI 1.08-2.05), hypnotics and sedatives (OR = 1.60, 95%CI 1.07-2.39), and antasthmatics (OR = 1.44, 95%CI 1.07-1.96), with no difference between countries. Noise sensitivity was significantly associated with almost all medications, with the exception of the use of antasthmatics, showing an increase in ORs with the level of noise sensitivity, with differences in ORs among countries only for the use of antihypertensive medication. The results also suggested a mediating role of aircraft noise annoyance and a modifying role of both aircraft noise annoyance and noise sensitivity in the association between aircraft noise levels and medication use. CONCLUSIONS: The present study is consistent with the results of the small number of studies available to date suggesting that both aircraft noise annoyance and noise sensitivity should be taken into account in analyses of the health effects of exposure to aircraft noise.


Assuntos
Ruído dos Transportes , Aeronaves , Aeroportos , Exposição Ambiental/efeitos adversos , Europa (Continente) , Humanos , Ruído dos Transportes/efeitos adversos
4.
Environ Int ; 146: 106306, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33395948

RESUMO

INTRODUCTION: To characterize air pollution exposure at a fine spatial scale, different exposure assessment methods have been applied. Comparison of associations with health from different exposure methods are scarce. The aim of this study was to evaluate associations of air pollution based on hybrid, land-use regression (LUR) and dispersion models with natural cause and cause-specific mortality. METHODS: We followed a Dutch national cohort of approximately 10.5 million adults aged 29+ years from 2008 until 2012. We used Cox proportional hazard models with age as underlying time scale and adjusted for several potential individual and area-level socio-economic status confounders to evaluate associations of annual average residential NO2, PM2.5 and BC exposure estimates based on two stochastic models (Dutch LUR, European-wide hybrid) and deterministic Dutch dispersion models. RESULTS: Spatial variability of PM2.5 and BC exposure was smaller for LUR compared to hybrid and dispersion models. NO2 exposure variability was similar for the three methods. Pearson correlations between hybrid, LUR and dispersion modeled NO2 and BC ranged from 0.72 to 0.83; correlations for PM2.5 were slightly lower (0.61-0.72). In general, all three models showed stronger associations of air pollutants with respiratory disease and lung cancer mortality than with natural cause and cardiovascular disease mortality. The strength of the associations differed between the three exposure models. Associations of air pollutants estimated by LUR were generally weaker compared to associations of air pollutants estimated by hybrid and dispersion models. For natural cause mortality, we found a hazard ratio (HR) of 1.030 (95% confidence interval (CI): 1.019, 1.041) per 10 µg/m3 for hybrid modeled NO2, a HR of 1.003 (95% CI: 0.993, 1.013) per 10 µg/m3 for LUR modeled NO2 and a HR of 1.015 (95% CI: 1.005, 1.024) per 10 µg/m3 for dispersion modeled NO2. CONCLUSION: Air pollution was positively associated with natural cause and cause-specific mortality, but the strength of the associations differed between the three exposure models. Our study documents that the selected exposure model may contribute to heterogeneity in effect estimates of associations between air pollution and health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Respiratórias , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Material Particulado/efeitos adversos , Material Particulado/análise
5.
Int J Hyg Environ Health ; 231: 113651, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129168

RESUMO

OBJECTIVES: The aim of this study is to assess whether medication use for obstructive airway diseases is associated with environmental exposure to livestock farms. Previous studies in the Netherlands at a regional level suggested that asthma and chronic obstructive pulmonary disease (COPD) are less prevalent among persons living near livestock farms. METHODS: A nationwide population-based cross-sectional study was conducted among 7,735,491 persons, with data on the dispensing of drugs for obstructive airway diseases in the Netherlands in 2016. Exposure was based on distances between home addresses and farms and on modelled atmospheric particulate matter (PM10) concentrations from livestock farms. Data were analysed for different regions by logistic regression analyses and adjusted for several individual-level variables, as well as modelled PM10 concentration of non-farm-related air pollution. Results for individual regions were subsequently pooled in meta-analyses. RESULTS: The probability of medication for asthma or COPD being dispensed to adults and children was lower with decreasing distance of their homes to livestock farms, particularly cattle and poultry farms. Increased concentrations of PM10 from cattle were associated with less dispensing of medications for asthma or COPD, as well (meta-analysis OR for 10th-90th percentile increase in concentration of PM10 from cattle farms, 95%CI: 0.92, 0.86-0.97 for adults). However, increased concentrations of PM10 from non-farm sources were positively associated (meta-analysis OR for 10th-90th percentile increase in PM10-concentration, 95%CI: 1.29, 1.09-1.52 for adults). CONCLUSIONS: The results show that the probability of dispensing medication for asthma or COPD is inversely associated with proximity to livestock farms and modelled exposure to livestock-related PM10 in multiple regions within the Netherlands. This finding implies a notable prevented risk: under the assumption of absence of livestock farms in the Netherlands, an estimated 2%-5% more persons (an increase in tens of thousands) in rural areas would receive asthma or COPD medication.

7.
Environ Res ; 191: 110179, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32919966

RESUMO

INTRODUCTION: Many studies, including the HYENA and the DEBATS studies, showed a significant association between aircraft noise exposure and the risk of hypertension. Few studies have considered aircraft noise annoyance and noise sensitivity as factors of interest, especially in relation to hypertension risk, or as mediating or modifying factors. The present study aims 1) to investigate the risk of hypertension in relation to aircraft noise annoyance or noise sensitivity; and 2) to examine the role of modifier or mediator of these two factors in the association between aircraft noise levels and the risk of hypertension. METHODS: This study included 6,105 residents of ten European airports from the HYENA and DEBATS studies. Information on aircraft noise annoyance, noise sensitivity, and demographic, socioeconomic and lifestyle factors was collected during an interview performed at home. Participants were classified as hypertensive if they had either blood pressure levels above the WHO cut-off points or physician-diagnosed hypertension in conjunction with the use of antihypertensive medication. Outdoor aircraft noise exposure was estimated for each participant's home address. Poisson regression models with adjustment for potential confounders were used. Interactions between noise exposure and country were tested to consider possible differences between countries. RESULTS: An increase in aircraft noise levels at night was weekly but significantly associated with an increased risk of hypertension (RR = 1.03, 95% CI 1.01-1.06 for a 10-dB(A) increase in Lnight). A significant association was found between aircraft noise annoyance and hypertension risk (RR = 1.06, 95%CI 1.00-1.13 for highly annoyed people compared to those who were not highly annoyed). The risk of hypertension was slightly higher for people highly sensitive to noise compared to people with low sensitivity in the UK (RR = 1.29, 95%CI 1.05-1.59) and in France (RR = 1.11, 95%CI 0.68-1.82), but not in the other countries. The association between aircraft noise levels and the risk of hypertension was higher among highly sensitive participants (RR = 1.00, 95%CI 0.96-1.04; RR = 1.03, 95%CI 0.90-1.11; RR = 1.12, 95%CI 1.01-1.24, with a 10-dB(A) increase in Lnight for low, medium, and high sensitive people respectively) or, to a lesser extent, among highly annoyed participants (RR = 1.06, 95%CI 0.95-1.18 for a 10-dB(A) increase in Lnight among highly annoyed participants, and RR = 1.02, 95%CI 0.99-1.06 among those not highly annoyed). CONCLUSIONS: The present study confirms findings in the small number of available studies to date suggesting adverse health effects associated with aircraft noise annoyance and noise sensitivity. The findings also indicate possible modifier effects of aircraft noise annoyance and noise sensitivity in the relationship between aircraft noise levels and the risk of hypertension. However, further investigations are needed to better understand this role using specific methodology and tools related to mediation analysis and causal inference.


Assuntos
Hipertensão , Ruído dos Transportes , Aeronaves , Exposição Ambiental/efeitos adversos , Europa (Continente)/epidemiologia , França , Humanos , Hipertensão/epidemiologia , Hipertensão/etiologia , Ruído dos Transportes/efeitos adversos
8.
Artigo em Inglês | MEDLINE | ID: mdl-32192215

RESUMO

Global environmental change has degraded ecosystems. Challenges such as climate change, resource depletion (with its huge implications for human health and wellbeing), and persistent social inequalities in health have been identified as global public health issues with implications for both communicable and noncommunicable diseases. This contributes to pressure on healthcare systems, as well as societal systems that affect health. A novel strategy to tackle these multiple, interacting and interdependent drivers of change is required to protect the population's health. Public health professionals have found that building strong, enduring interdisciplinary partnerships across disciplines can address environment and health complexities, and that developing Environmental and Public Health Tracking (EPHT) systems has been an effective tool. EPHT aims to merge, integrate, analyse and interpret environmental hazards, exposure and health data. In this article, we explain that public health decision-makers can use EPHT insights to drive public health actions, reduce exposure and prevent the occurrence of disease more precisely in efficient and cost-effective ways. An international network exists for practitioners and researchers to monitor and use environmental health intelligence, and to support countries and local areas toward sustainable and healthy development. A global network of EPHT programs and professionals has the potential to advance global health by implementing and sharing experience, to magnify the impact of local efforts and to pursue data knowledge improvement strategies, aiming to recognise and support best practices. EPHT can help increase the understanding of environmental public health and global health, improve comparability of risks between different areas of the world including Low and Middle-Income Countries (LMICs), enable transparency and trust among citizens, institutions and the private sector, and inform preventive decision making consistent with sustainable and healthy development. This shows how EPHT advances global health efforts by sharing recent global EPHT activities and resources with those working in this field. Experiences from the US, Europe, Asia and Australasia are outlined for operating successful tracking systems to advance global health.


Assuntos
Saúde Ambiental , Saúde Global , Saúde Pública , Ásia , Canadá , Ecossistema , Europa (Continente) , Humanos , Vigilância da População
9.
Sci Total Environ ; 705: 135778, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31972935

RESUMO

BACKGROUND: Long-term exposure to particulate air pollution has been associated with mortality in urban cohort studies. Few studies have investigated the association between emission contributions from different particle sources and mortality in large-scale population registries, including non-urban populations. OBJECTIVES: The aim of the study was to evaluate the associations between long-term exposure to particulate air pollution from different source categories and non-accidental mortality in the Netherlands based on existing national databases. METHODS: We used existing Dutch national databases on mortality, individual characteristics, residence history, neighbourhood characteristics and modelled air pollution concentrations from different sources and air pollution components: particulate matter PM10, primary particulate matter PM10 (PPM10), particulate matter PM2.5, primary particulate matter PM2.5 (PPM2.5), elemental carbon (EC), nitrogen dioxide (NO2) and secondary inorganic aerosol (SIA) in PM10 (SIA10) or in PM2.5 (SIA2.5). We established a cohort of 7.5 million individuals 30 years or older. We followed the cohort for eight years (2008-2015). We applied Cox proportional hazard regression models adjusting for potential individual and area-specific confounders. RESULTS: We found statistically significant associations between total and primary particulate matter (PM10 and PM2.5), elemental carbon and mortality. Adjustment for nitrogen dioxide did not change the associations. Secondary inorganic aerosol showed less consistent associations. All primary PM sources were associated with mortality, except agricultural emissions and, depending on the statistical model, industrial PM emissions. CONCLUSIONS: We could not identify one or more specific source categories of particulate air pollution as main determinants of the mortality effects found in this and in a previous study. This suggests that present policy measures should be focussed on the wider spectrum of air pollution sources instead of on specific sources.


Assuntos
Poluição do Ar , Adulto , Poluentes Atmosféricos , Exposição Ambiental , Humanos , Estudos Longitudinais , Países Baixos , Material Particulado
10.
Environ Health ; 16(1): 110, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29078795

RESUMO

BACKGROUND: Road traffic noise has been associated with adverse health effects including sleep disturbances. Use of sleep medication as an indicator of sleeping problems has rarely been explored in studies of the effects of traffic noise. Furthermore, using registry data on sleep medications provides an opportunity to study the effects of noise on sleep where attribution of sleep problems to noise is not possible. METHODS: We used questionnaire data from the population-based study Health and Environment in Oslo (HELMILO) (2009-10) (n = 13,019). Individual data on sleep medications was obtained from the Norwegian Prescription Database (NorPD). Noise levels (L night) were modeled for the most exposed façade of the building at each participant's home address. Logistic regression models adjusted for potential confounders were used to analyze the association between traffic noise and sleep medication use both for one whole year and for the summer season. The results were reported as changes in the effect estimate per 5 decibel (dB) increase in noise level. RESULTS: We observed no association between traffic noise and sleep medication use during one year [odds ratio (OR) = 1.00; 95% confidence interval (CI): 0.96, 1.04]. For sleep medication use in the summer season, there was a positive, however non-significant association (OR = 1.04; 95% CI: 0.99, 1.10). Among individuals sleeping with the bedroom window open, the association increased slightly and was borderline statistically significant (OR = 1.06; 95% CI: 1.00, 1.12). CONCLUSIONS: We found no evidence of an association between traffic noise and sleep medication use during one year. However, for the summer season, there was some suggestive evidence of an association. These findings indicate that season may play a role in the association between traffic noise and sleep, possibly because indoor traffic noise levels are likely to be higher during summer due to more frequent window opening. More studies are, however, necessary in order to confirm this.


Assuntos
Prescrições de Medicamentos/estatística & dados numéricos , Ruído dos Transportes , Transtornos do Sono-Vigília/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Monitoramento Ambiental , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Noruega , Razão de Chances , Sistema de Registros , Estações do Ano
11.
Occup Environ Med ; 74(11): 830-837, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28611191

RESUMO

BACKGROUND: We followed up, in 2013, the subjects who lived near the Athens International Airport and had participated in the cross-sectional multicountry HYENA study in 2004-2006. OBJECTIVE: To evaluate the association of exposure to aircraft and road traffic noise with the incidence of hypertension and other cardiovascular outcomes. METHODS: From the 780 individuals who participated in the cross-sectional study, 537 were still living in the same area and 420 accepted to participate in the follow-up. Aircraft and road traffic noise exposure was based on the estimations conducted in 2004-2006, linking geocoded residential addresses of the participants to noise levels. We applied multiple logistic regression and Cox proportional hazards models, adjusting for potential confounders. RESULTS: The incidence of hypertension was significantly associated with higher aircraft noise exposure during the night. Specifically, the OR for hypertension per 10 dB increase in Lnight aircraft noise exposure was 2.63 (95% CI 1.21 to 5.71). Doctor-diagnosed cardiac arrhythmia was significantly associated with Lnight aircraft noise exposure, when prevalent and incident cases were considered with an OR of 2.09 (95% CI 1.07 to 4.08). Stroke risk was also increased with increasing noise exposure but the association was not significant. Twenty-four-hour road traffic noise associations with the outcomes considered were weaker and less consistent. CONCLUSIONS: In conclusion, our cohort study suggests that long-term exposure to aircraft noise, particularly during the night, is associated with incident hypertension and possibly, also, cardiovascular effects.


Assuntos
Aeronaves , Aeroportos , Arritmias Cardíacas/etiologia , Exposição Ambiental/efeitos adversos , Hipertensão/etiologia , Ruído dos Transportes/efeitos adversos , Características de Residência , Idoso , Doenças Cardiovasculares/etiologia , Estudos de Coortes , Estudos Transversais , Feminino , Grécia , Habitação , Humanos , Incidência , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Prevalência , Modelos de Riscos Proporcionais , Acidente Vascular Cerebral/etiologia
12.
Environ Res ; 156: 364-373, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28395240

RESUMO

BACKGROUND: Cohorts based on administrative data have size advantages over individual cohorts in investigating air pollution risks, but often lack in-depth information on individual risk factors related to lifestyle. If there is a correlation between lifestyle and air pollution, omitted lifestyle variables may result in biased air pollution risk estimates. Correlations between lifestyle and air pollution can be induced by socio-economic status affecting both lifestyle and air pollution exposure. OBJECTIVES: Our overall aim was to assess potential confounding by missing lifestyle factors on air pollution mortality risk estimates. The first aim was to assess associations between long-term exposure to several air pollutants and lifestyle factors. The second aim was to assess whether these associations were sensitive to adjustment for individual and area-level socioeconomic status (SES), and whether they differed between subgroups of the population. Using the obtained air pollution-lifestyle associations and indirect adjustment methods, our third aim was to investigate the potential bias due to missing lifestyle information on air pollution mortality risk estimates in administrative cohorts. METHODS: We used a recent Dutch national health survey of 387,195 adults to investigate the associations of PM10, PM2.5, PM2.5-10, PM2.5 absorbance, OPDTT, OPESR and NO2 annual average concentrations at the residential address from land use regression models with individual smoking habits, alcohol consumption, physical activity and body mass index. We assessed the associations with and without adjustment for neighborhood and individual SES characteristics typically available in administrative data cohorts. We illustrated the effect of including lifestyle information on the air pollution mortality risk estimates in administrative cohort studies using a published indirect adjustment method. RESULTS: Current smoking and alcohol consumption were generally positively associated with air pollution. Physical activity and overweight were negatively associated with air pollution. The effect estimates were small (mostly <5% of the air pollutant standard deviations). Direction and magnitude of the associations depended on the pollutant, use of continuous vs. categorical scale of the lifestyle variable, and level of adjustment for individual and area-level SES. Associations further differed between subgroups (age, sex) in the population. Despite the small associations between air pollution and smoking intensity, indirect adjustment resulted in considerable changes of air pollution risk estimates for cardiovascular and especially lung cancer mortality. CONCLUSIONS: Individual lifestyle-related risk factors were weakly associated with long-term exposure to air pollution in the Netherlands. Indirect adjustment for missing lifestyle factors in administrative data cohort studies may substantially affect air pollution mortality risk estimates.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental , Estilo de Vida , Mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Estilo de Vida/etnologia , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Material Particulado/análise , Medição de Risco , Classe Social , Adulto Jovem
13.
Eur Heart J ; 38(13): 983-990, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28417138

RESUMO

Aims: We investigated whether traffic-related air pollution and noise are associated with incident hypertension in European cohorts. Methods and results: We included seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). We modelled concentrations of particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), ≤10 µm (PM10), >2.5, and ≤10 µm (PMcoarse), soot (PM2.5 absorbance), and nitrogen oxides at the addresses of participants with land use regression. Residential exposure to traffic noise was modelled at the facade according to the EU Directive 2002/49/EC. We assessed hypertension as (i) self-reported and (ii) measured (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg or intake of BP lowering medication (BPLM). We used Poisson regression with robust variance estimation to analyse associations of traffic-related exposures with incidence of hypertension, controlling for relevant confounders, and combined the results from individual studies with random-effects meta-analysis. Among 41 072 participants free of self-reported hypertension at baseline, 6207 (15.1%) incident cases occurred within 5-9 years of follow-up. Incidence of self-reported hypertension was positively associated with PM2.5 (relative risk (RR) 1.22 [95%-confidence interval (CI):1.08; 1.37] per 5 µg/m³) and PM2.5 absorbance (RR 1.13 [95% CI:1.02; 1.24] per 10 - 5m - 1). These estimates decreased slightly upon adjustment for road traffic noise. Road traffic noise was weakly positively associated with the incidence of self-reported hypertension. Among 10 896 participants at risk, 3549 new cases of measured hypertension occurred. We found no clear associations with measured hypertension. Conclusion: Long-term residential exposures to air pollution and noise are associated with increased incidence of self-reported hypertension.


Assuntos
Poluição do Ar/efeitos adversos , Hipertensão/etiologia , Ruído dos Transportes/efeitos adversos , Idoso , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Anti-Hipertensivos/uso terapêutico , Europa (Continente)/epidemiologia , Feminino , Humanos , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Incidência , Masculino , Pessoa de Meia-Idade , Material Particulado/efeitos adversos , Material Particulado/análise , Prognóstico , Estudos Prospectivos , Autorrelato
14.
Environ Health Perspect ; 123(7): 697-704, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25760672

RESUMO

BACKGROUND: Long-term exposure to air pollution has been associated with mortality in urban cohort studies. Few studies have investigated this association in large-scale population registries, including non-urban populations. OBJECTIVES: The aim of the study was to evaluate the associations between long-term exposure to air pollution and nonaccidental and cause-specific mortality in the Netherlands based on existing national databases. METHODS: We used existing Dutch national databases on mortality, individual characteristics, residence history, neighborhood characteristics, and national air pollution maps based on land use regression (LUR) techniques for particulates with an aerodynamic diameter ≤ 10 µm (PM10) and nitrogen dioxide (NO2). Using these databases, we established a cohort of 7.1 million individuals ≥ 30 years of age. We followed the cohort for 7 years (2004-2011). We applied Cox proportional hazard models adjusting for potential individual and area-specific confounders. RESULTS: After adjustment for individual and area-specific confounders, for each 10-µg/m3 increase, PM10 and NO2 were associated with nonaccidental mortality [hazard ratio (HR) = 1.08; 95% CI: 1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively], respiratory mortality (HR = 1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, respectively). Furthermore, PM10 was associated with circulatory disease mortality (HR = 1.06; 95% CI: 1.04, 1.08), but NO2 was not (HR = 1.00; 95% CI: 0.99, 1.01). PM10 associations were robust to adjustment for NO2; NO2 associations remained for nonaccidental mortality and lung cancer mortality after adjustment for PM10. CONCLUSIONS: Long-term exposure to PM10 and NO2 was associated with nonaccidental and cause-specific mortality in the Dutch population of ≥ 30 years of age.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/mortalidade , Neoplasias Pulmonares/mortalidade , Dióxido de Nitrogênio/toxicidade , Material Particulado/toxicidade , Doenças Respiratórias/mortalidade , Adulto , Idoso , Estudos de Coortes , Feminino , Humanos , Incidência , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Análise de Regressão
15.
Eur J Prev Cardiol ; 22(1): 4-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24047569

RESUMO

AIMS: Elevation of a child's blood pressure may cause possible health risks in later life. There is evidence for adverse effects of exposure to air pollution and noise on blood pressure in adults. Little is known about these associations in children. We investigated the associations of air pollution and noise exposure with blood pressure in 12-year-olds. METHODS: Blood pressure was measured at age 12 years in 1432 participants of the PIAMA birth cohort study. Annual average exposure to traffic-related air pollution [NO2, mass concentrations of particulate matter with diameters of less than 2.5 µm (PM2.5) and less than 10 µm (PM10), and PM2.5 absorbance] at the participants' home and school addresses at the time of blood pressure measurements was estimated by land-use regression models. Air pollution exposure on the days preceding blood pressure measurements was estimated from routine air monitoring data. Long-term noise exposure was assessed by linking addresses to modelled equivalent road traffic noise levels. Associations of exposures with blood pressure were analysed by linear regression. Effects are presented for an interquartile range increase in exposure. RESULTS: Long-term exposure to NO2 and PM2.5 absorbance were associated with increased diastolic blood pressure, in children who lived at the same address since birth [adjusted mean difference (95% confidence interval) [mmHg] 0.83 (0.06 to 1.61) and 0.75 (-0.08 to 1.58), respectively], but not with systolic blood pressure. We found no association of blood pressure with short-term air pollution or noise exposure. CONCLUSIONS: Long-term exposure to traffic-related air pollution may increase diastolic blood pressure in children.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Automóveis , Pressão Sanguínea , Exposição Ambiental/efeitos adversos , Hipertensão/etiologia , Exposição por Inalação/efeitos adversos , Óxido Nítrico/efeitos adversos , Ruído dos Transportes/efeitos adversos , Material Particulado/efeitos adversos , Emissões de Veículos , Adolescente , Fatores Etários , Criança , Monitoramento Ambiental , Feminino , Humanos , Hipertensão/diagnóstico , Hipertensão/fisiopatologia , Masculino , Países Baixos , Tamanho da Partícula , Características de Residência , Medição de Risco , Fatores de Risco , Fatores de Tempo
16.
Sci Total Environ ; 497-498: 420-429, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25146911

RESUMO

We conducted a multi-country study to estimate the perceived economic values of traffic-related air pollution and noise health risks within the framework of a large European project. We used contingent valuation as a method to assess the willingness-to-pay (WTP) for both types of pollutants simultaneously. We asked respondents how much they would be willing to pay annually to avoid certain health risks from specific pollutants. Three sets of vignettes with different levels of information were provided prior to the WTP questions. These vignettes described qualitative general health risks, a quantitative single health risk related to a pollutant, and a quantitative scenario of combined health risks related to a pollutant. The mean WTP estimates to avoid road-traffic air pollution effects for the three vignettes were: €130 per person per year (pp/y) for general health risks, €80 pp/y for a half year shorter in life expectancy, and €330 pp/y to a 50% decrease in road-traffic air pollution. Their medians were €40 pp/y, €10 pp/y and €50 pp/y, respectively. The mean WTP estimates to avoid road-traffic noise effects for the three vignettes were: €90 pp/y for general health risks, €100 pp/y for a 13% increase in severe annoyance, and €320 pp/y for a combined-risk scenario related to an increase of a noise level from 50 dB to 65 dB. Their medians were €20 pp/y, €20 pp/y and €50 pp/y, respectively. Risk perceptions and attitudes as well as environmental and pollutant concerns significantly affected WTP estimates. The observed differences in crude WTP estimates between countries changed considerably when perception-related variables were included in the WTP regression models. For this reason, great care should be taken when performing benefit transfer from studies in one country to another.


Assuntos
Poluição do Ar/economia , Política Ambiental , Ruído , Humanos , Risco
17.
Environ Health ; 13(1): 35, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24885941

RESUMO

BACKGROUND: The health impacts from traffic-related pollutants bring costs to society, which are often not reflected in market prices for transportation. We set out to simultaneously assess the willingness-to-pay (WTP) for traffic-related air pollution and noise effect on health, using a single measurement instrument and approach. We investigated the proportion and determinants of "protest vote/PV responses (people who were against valuing their health in terms of money)" and "don't know"/DK answers, and explored the effect of DK on the WTP distributions. METHODS: Within the framework of the EU-funded project INTARESE, we asked over 5,200 respondents in five European countries to state their WTP to avoid health effects from road traffic-related air pollution and noise in an open-ended web-based questionnaire. Determinants of PV and DK were studied by logistic regression using variables concerning socio-demographics, income, health and environmental concern, and risk perception. RESULTS: About 10% of the respondents indicated a PV response and between 47-56% of respondents gave DK responses. About one-third of PV respondents thought that costs should be included in transportation prices, i.e. the polluter should pay. Logistic regression analyses showed associations of PV and DK with several factors. In addition to social-demographic, economic and health factors known to affect WTP, environmental concern, awareness of health effects, respondent's ability to relax in polluted places, and their view on the government's role to reduce pollution and on policy to improve wellbeing, also affected the PV and DK response. An exploratory weighting and imputation exercise did not show substantial effects of DK on the WTP distribution. CONCLUSIONS: With a proportion of about 50%, DK answers may be a more relevant issue affecting WTP than PV's. The likelihood to give PV and DK response were influenced by socio-demographic, economic and health factors, as well as environmental concerns and appreciation of environmental conditions and policies. In contested policy issues where actual policy may be based on WTP studies, PV and DK answers may indeed affect the outcome of the WTP study. PV and DK answers and their determinants therefore deserve further study in CV studies on environmental health effects.


Assuntos
Poluição do Ar/economia , Saúde Ambiental/economia , Ruído dos Transportes , Emissões de Veículos , Adolescente , Adulto , Poluição do Ar/prevenção & controle , Atitude Frente a Saúde , Europa (Continente) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Veículos Automotores , Ruído dos Transportes/prevenção & controle , Opinião Pública , Inquéritos e Questionários , Adulto Jovem
18.
Environ Health Perspect ; 122(9): 919-25, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24835336

RESUMO

BACKGROUND: Few studies have investigated effects of air pollution on the incidence of cerebrovascular events. OBJECTIVES: We assessed the association between long-term exposure to multiple air pollutants and the incidence of stroke in European cohorts. METHODS: Data from 11 cohorts were collected, and occurrence of a first stroke was evaluated. Individual air pollution exposures were predicted from land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE). The exposures were: PM2.5 [particulate matter (PM) ≤ 2.5 µm in diameter], coarse PM (PM between 2.5 and 10 µm), PM10 (PM ≤ 10 µm), PM2.5 absorbance, nitrogen oxides, and two traffic indicators. Cohort-specific analyses were conducted using Cox proportional hazards models. Random-effects meta-analysis was used for pooled effect estimation. RESULTS: A total of 99,446 study participants were included, 3,086 of whom developed stroke. A 5-µg/m3 increase in annual PM2.5 exposure was associated with 19% increased risk of incident stroke [hazard ratio (HR) = 1.19, 95% CI: 0.88, 1.62]. Similar findings were obtained for PM10. The results were robust to adjustment for an extensive list of cardiovascular risk factors and noise coexposure. The association with PM2.5 was apparent among those ≥ 60 years of age (HR = 1.40, 95% CI: 1.05, 1.87), among never-smokers (HR = 1.74, 95% CI: 1.06, 2.88), and among participants with PM2.5 exposure < 25 µg/m3 (HR = 1.33, 95% CI: 1.01, 1.77). CONCLUSIONS: We found suggestive evidence of an association between fine particles and incidence of cerebrovascular events in Europe, even at lower concentrations than set by the current air quality limit value.


Assuntos
Doenças Cardiovasculares/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/toxicidade , Estudos de Coortes , Europa (Continente)/epidemiologia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Óxidos de Nitrogênio/toxicidade , Ruído dos Transportes , Tamanho da Partícula , Material Particulado/toxicidade , Análise de Regressão , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia
19.
Environ Health Perspect ; 122(9): 896-905, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24835507

RESUMO

BACKGROUND: Long-term exposure to air pollution has been hypothesized to elevate arterial blood pressure (BP). The existing evidence is scarce and country specific. OBJECTIVES: We investigated the cross-sectional association of long-term traffic-related air pollution with BP and prevalent hypertension in European populations. METHODS: We analyzed 15 population-based cohorts, participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE). We modeled residential exposure to particulate matter and nitrogen oxides with land use regression using a uniform protocol. We assessed traffic exposure with traffic indicator variables. We analyzed systolic and diastolic BP in participants medicated and nonmedicated with BP-lowering medication (BPLM) separately, adjusting for personal and area-level risk factors and environmental noise. Prevalent hypertension was defined as ≥ 140 mmHg systolic BP, or ≥ 90 mmHg diastolic BP, or intake of BPLM. We combined cohort-specific results using random-effects meta-analysis. RESULTS: In the main meta-analysis of 113,926 participants, traffic load on major roads within 100 m of the residence was associated with increased systolic and diastolic BP in nonmedicated participants [0.35 mmHg (95% CI: 0.02, 0.68) and 0.22 mmHg (95% CI: 0.04, 0.40) per 4,000,000 vehicles × m/day, respectively]. The estimated odds ratio (OR) for prevalent hypertension was 1.05 (95% CI: 0.99, 1.11) per 4,000,000 vehicles × m/day. Modeled air pollutants and BP were not clearly associated. CONCLUSIONS: In this first comprehensive meta-analysis of European population-based cohorts, we observed a weak positive association of high residential traffic exposure with BP in nonmedicated participants, and an elevated OR for prevalent hypertension. The relationship of modeled air pollutants with BP was inconsistent.


Assuntos
Poluentes Atmosféricos/toxicidade , Pressão Arterial , Exposição Ambiental/estatística & dados numéricos , Hipertensão/induzido quimicamente , Hipertensão/epidemiologia , Material Particulado/toxicidade , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Anti-Hipertensivos/uso terapêutico , Estudos Transversais , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Feminino , Humanos , Masculino , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/toxicidade , Ruído dos Transportes/estatística & dados numéricos , Material Particulado/análise , Fatores de Risco , Emissões de Veículos/análise
20.
Epidemiology ; 25(3): 368-78, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24589872

RESUMO

BACKGROUND: Air pollution has been associated with cardiovascular mortality, but it remains unclear as to whether specific pollutants are related to specific cardiovascular causes of death. Within the multicenter European Study of Cohorts for Air Pollution Effects (ESCAPE), we investigated the associations of long-term exposure to several air pollutants with all cardiovascular disease (CVD) mortality, as well as with specific cardiovascular causes of death. METHODS: Data from 22 European cohort studies were used. Using a standardized protocol, study area-specific air pollution exposure at the residential address was characterized as annual average concentrations of the following: nitrogen oxides (NO2 and NOx); particles with diameters of less than 2.5 µm (PM2.5), less than 10 µm (PM10), and 10 µm to 2.5 µm (PMcoarse); PM2.5 absorbance estimated by land-use regression models; and traffic indicators. We applied cohort-specific Cox proportional hazards models using a standardized protocol. Random-effects meta-analysis was used to obtain pooled effect estimates. RESULTS: The total study population consisted of 367,383 participants, with 9994 deaths from CVD (including 4,992 from ischemic heart disease, 2264 from myocardial infarction, and 2484 from cerebrovascular disease). All hazard ratios were approximately 1.0, except for particle mass and cerebrovascular disease mortality; for PM2.5, the hazard ratio was 1.21 (95% confidence interval = 0.87-1.69) per 5 µg/m and for PM10, 1.22 (0.91-1.63) per 10 µg/m. CONCLUSION: In a joint analysis of data from 22 European cohorts, most hazard ratios for the association of air pollutants with mortality from overall CVD and with specific CVDs were approximately 1.0, with the exception of particulate mass and cerebrovascular disease mortality for which there was suggestive evidence for an association.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/mortalidade , Causas de Morte , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/química , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Estudos de Coortes , Bases de Dados Factuais , Exposição Ambiental/efeitos adversos , Europa (Continente) , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/efeitos adversos , Material Particulado , Modelos de Riscos Proporcionais , Distribuição por Sexo , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...