Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 16(1): 154-163, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31743016

RESUMO

This work evaluates the quality of exchange coupling constant and spin crossover gap calculations using density functional theory corrected by the approximate projection model. Results show that improvements using the approximate projection model range from modest to significant. This study demonstrates that, at least for the class of systems examined here, spin projection generally improves the quality of density functional theory calculations of J-coupling constants and spin crossover gaps. Furthermore, it is shown that spin projection can be important for both geometry optimization and energy evaluations. The approximate projection model provides an affordable and practical approach for effectively correcting spin-contamination errors in such calculations.

2.
Acc Chem Res ; 52(11): 3265-3273, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31702894

RESUMO

Lanthanide (Ln) oxide clusters and molecular systems provide a bottom-up look at the electronic structures of the bulk materials because of close parallels in the patterns of Ln 4fN subshell occupancy between the molecular and bulk Ln2O3 size limits. At the same time, these clusters and molecules offer a challenge to the theory community to find appropriate and robust treatments for the 4fN patterns across the Ln series. Anion photoelectron (PE) spectroscopy provides a powerful experimental tool for studying these systems, mapping the energies of the ground and low-lying excited states of the neutral relative to the initial anion state, providing spectroscopic patterns that reflect the Ln 4fN occupancy. In this Account, we review our anion PE spectroscopic and computational studies on a range of small lanthanide molecules and cluster species. The PE spectra of LnO- (Ln = Ce, Pr, Sm, Eu) diatomic molecules show spectroscopic signatures associated with detachment of an electron from what can be described as a diffuse Ln 6s-like orbital. While the spectra of all four diatomics share this common transition, the fine structure in the transition becomes more complex with increasing 4f occupancy. This effect reflects increased coupling between the electrons occupying the corelike 4f and diffuse 6s orbitals with increasing N. Understanding the PE spectra of these diatomics sets the stage for interpreting the spectra of polyatomic molecular and cluster species. In general, the results confirm that the partial 4fN subshell occupancy is largely preserved between molecular and bulk oxides and borides. However, they also suggest that surfaces and edges of bulk materials may support a low-energy, diffuse Ln 6s band, in contrast to bulk interiors, in which the 6s band is destabilized relative to the 5d band. We also identify cases in which the molecular Ln centers have 4fN+1 occupancy rather than bulklike 4fN, which results in weaker Ln-O bonding. Specifically, Sm centers in mixed Ce-Sm oxides or in SmxOy- (y ≤ x) clusters have this higher 4fN+1 occupancy. The PE spectra of these particular species exhibit a striking increase in the relative intensities of excited-state transitions with decreasing photon energy (resulting in lower photoelectron kinetic energy). This is opposite of what is expected on the basis of the threshold laws that govern photodetachment. We relate this phenomenon to strong electron-neutral interactions unique to these complex electronic structures. The time scale of the interaction, which shakes up the electronic configuration of the neutral, increases with decreasing electron momentum. From a computational standpoint, we point out that special care must be taken when considering Ln cluster and molecular systems toward the center of the Ln series (e.g., Sm, Eu), where treatment of electrons explicitly or using an effective core potential can yield conflicting results on competing subshell occupancies. However, despite the complex electronic structures associated with partially filled 4fN subshells, we demonstrate that inexpensive and tractable calculations yield useful qualitative insight into the general electronic structural features.

3.
Phys Chem Chem Phys ; 21(39): 21890-21897, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31552934

RESUMO

Lanthanide hydroxides are key species in a variety of catalytic processes and in the preparation of corresponding oxides. This work explores the fundamental structure and bonding of the simplest lanthanide hydroxide, LnOH (Ln = La-Lu), using density functional theory calculations. Interestingly, the calculations predict that all structures of this series will be linear. Furthermore, these results indicate a valence electron configuration of σ2π4 for all LnOH compounds, suggesting that the lanthanide-hydroxide bond is best characterized as a covalent triple bond.

4.
Org Lett ; 21(6): 1574-1577, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30807191

RESUMO

Readily prepared cis-ß-(α',α'-dimethyl)-4'-methindolylstyrenes undergo acid-catalyzed intramolecular hydroindolation to afford tetrahydrobenzo[ cd]indoles. Our experimental and computational investigations suggest that dispersive interactions between the indole and styrene preorganize substrates such that 6-membered ring formation is preferred, apparently via concerted protonation and C-C bond formation. When dispersion is attenuated (by a substituent or heteroatom), regioselectivity erodes and competing oligomerization predominates for cis substrates. Similarly, all trans-configured substrates that we evaluated failed to cyclize efficiently.

5.
J Phys Chem A ; 123(10): 2040-2048, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30788965

RESUMO

The electronic and molecular structure of the CeB6 molecular unit has been probed by anion PE spectroscopy and DFT calculations to gain insight into structural and electronic relaxation on edge and corner sites of this ionic material. While boron in bulk lanthanide hexaboride materials assumes octahedral B63- units, the monomer assumes a less compact structure to delocalize the charge. Two competitive molecular structures were identified for the anion and neutral species, which include a boat-like structure and a planar or near-planar teardrop structure. Ce adopts different orbital occupancies in the two isomers; the boat-like structure has a 4f superconfiguration while the teardrop favors a 4f 6s occupancy. The B6 ligand in these structures carries a charge of -4 and -3, respectively. The teardrop structure, which was calculated to be isoenergetic with the boat structure, was most consistent with the experimental spectrum. B6-local orbitals crowd the energy window between the Ce 4f and 6s (HOMO) orbitals. A low-lying transition from the B-based orbitals is observed slightly less than 1 eV above the ground state. The results suggest that edge and corner conductivity involves stabilized, highly diffuse 6s orbitals or bands rather than the bulk-favored 5d band. High-spin and open-shell low-spin states were calculated to be very close in energy for both the anion and neutral, a characteristic that reflects how decoupled the 4f electron is from the B6 2p- and Ce 6s-based molecular orbitals.

6.
J Phys Chem A ; 122(51): 9879-9885, 2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30518216

RESUMO

Boronyl (B≡O) ligands have garnered much attention as isoelectronic and isolobal analogues of CO and CN-, yet successful efforts in synthesizing metal boronyl complexes remain scarce. Anion photoelectron (PE) spectroscopy and density functional theory calculations were employed to investigate two small CeO2B x- ( x = 2, 3) complexes generated from laser ablation of a mixed Ce/B pressed powder target. The spectra reveal markedly different bonding upon incorporation of an additional B atom. Most interestingly, CeO2B2- was found to have a Ce(I) center coordinated to two monoanionic boronyl ligands in a bent geometry. This result was unexpected as previous studies suggest electron-rich metals are most suitable for stabilizing such ligands; furthermore, it is one of the first examples of an experimental metal-polyboronyl complex. Introducing another boron atom, however, favors a much different geometry in which Ce(II) coordinates an O2B33- unit through both the O and B atoms, which was evident in the markedly different PE spectra.

7.
J Chem Phys ; 149(5): 054305, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089379

RESUMO

Lanthanide (Ln) oxide clusters have complex electronic structures arising from the partially occupied Ln 4f subshell. New anion photoelectron (PE) spectra of SmxCe3-xOy- (x = 0-3; y = 2-4) along with supporting results of density functional theory (DFT) calculations suggest interesting x and y-dependent Sm 4f subshell occupancy with implications for Sm-doped ionic conductivity of ceria, as well as the overall electronic structure of the heterometallic oxides. Specifically, the Sm centers in the heterometallic species have higher 4f subshell occupancy than the homonuclear Sm3Oy-/Sm3Oy clusters. The higher 4f subshell occupancy both weakens Sm-O bonds and destabilizes the 4f subshell relative to the predominantly O 2p bonding orbitals in the clusters. Parallels between the electronic structures of these small cluster systems with bulk oxides are explored. In addition, unusual changes in the excited state transition intensities, similar to those observed previously in the PE spectra of Sm2O- and Sm2O2- [J. O. Kafader et al., J. Chem. Phys. 146, 194310 (2017)], are also observed in the relative intensities of electronic transitions to excited neutral state bands in the PE spectra of SmxCe3-xOy- (x = 1-3; y = 2, 4). The new spectra suggest that the effect is enhanced with lower oxidation states and with an increasing number of Sm atoms, implying that the prevalence of electrons in the diffuse Sm 6s-based molecular orbitals and a more populated 4f subshell both contribute to this phenomenon. Finally, this work identifies challenges associated with affordable DFT calculations in treating the complex electronic structures exhibited by these systems, including the need for a more explicit treatment of strong coupling between the neutral and PE.

8.
J Chem Phys ; 148(22): 222810, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29907033

RESUMO

Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

9.
J Chem Phys ; 146(10): 104301, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28298106

RESUMO

Attempts to reconcile simulated photoelectron spectra of MoVO4- clusters are complicated by the presence of very low energy barriers in the potential energy surfaces (PESs) of the lowest energy spin states and isomers. Transition state structures associated with the inversion of terminal oxygen ligands are found to lie below, or close to, the zero point energy of associated modes, which themselves are found to be of low frequency and thus likely to be significantly populated in the experimental characterization. Our simulations make use of Boltzmann averaging over low-energy coordinates and full mapping of the PES to obtain simulations in good agreement with experimental spectra. Furthermore, molecular orbital analysis of accessible final spin states reveals the existence of low energy two-electron transitions in which the final state is obtained from a finite excitation of an electron along with the main photodetachment event. Two-electron transitions are then used to justify the large difference in intensity between different bands present in the photoelectron spectrum. Owing to the general presence of terminal ligands in metal oxide clusters, this study identifies and proposes a solution to issues that are generally encountered when attempting to simulate transition metal cluster photoelectron spectroscopy.

10.
J Chem Theory Comput ; 12(10): 4925-4933, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27571168

RESUMO

We simulated the intrinsic reaction path of the Green Fluorescent Protein (GFP) proton shuttle in both the ground state (S0) and first singlet excited state (S1), accounting for the main energetic and steric effects of the protein in a convenient model including the chromophore, the crystallographic water, and the residues directly involved in the proton transfer event. We adopted density functional theory (DFT) and time-dependent density functional theory (TD-DFT) levels to define the potential energy surfaces of the two electronic states, and we compared results obtained by the Damped Velocity Verlet and the Hessian-based Predictor-Corrector integrators of the intrinsic reaction coordinate, which gave a comparable and consistent picture of the mechanism. We show that, at S1, the GFP proton transfer becomes favored, with respect to S0, as suggested by the experimental evidence. As an important finding, this change is strictly related to the rearrangement of the hydrogen bond network composing the reaction path, which, in S1, relaxes to a tighter and planar configuration, as a consequence of the photoinduced relaxation in the GFP chromophore structure, thus prompting more effectively for the proton shuttle. Therefore, we give an unprecedented direct proof of the key role played by the photoinduced structural relaxation of the GFP on the chromophore photoacidity, validating, in particular, the hypothesis of Fang and co-workers [Nature 2009, 462, 200].


Assuntos
Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Ligações de Hidrogênio , Modelos Moleculares , Prótons , Teoria Quântica , Termodinâmica , Água/química
11.
J Chem Phys ; 144(20): 204117, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-27250289

RESUMO

A compact orbital representation of ionization processes is described utilizing the difference of calculated one-particle density matrices. Natural orbital analysis involving this difference density matrix simplifies interpretation of electronic detachment processes and allows differentiation between one-electron transitions and shake-up/shake-off transitions, in which one-electron processes are accompanied by excitation of a second electron into the virtual orbital space.

12.
J Comput Chem ; 37(9): 861-70, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26919703

RESUMO

A new computational protocol relying on the use of electrostatic embedding, derived from QM/QM' ONIOM calculations, to simulate the effect of the crystalline environment on the emission spectra of molecular crystals is here applied to the ß-form of salicylidene aniline (SA). The first singlet excited states (S1 ) of the SA cis-keto and trans-keto conformers, surrounded by a cluster of other molecules representing the crystalline structure, were optimized by using a QM/QM' ONIOM approach with and without electronic embedding. The model system consisting of the central salicylidene aniline molecule was treated at the DFT level by using either the B3LYP, PBE0, or the CAM-B3LYP functional, whereas the real system was treated at the HF level. The CAM-B3LYP/HF level of theory provides emission energies in good agreement with experiment with differences of -20/-32 nm (cis-keto form) and -8/-14 nm (trans-keto form), respectively, whereas notably larger differences are obtained using global hybrids. Though such differences on the optical properties arise from the density functional choice, the contribution of the electronic embedding is rather independent of the functional used. This plays in favor of a more general applicability of the present protocol to other crystalline molecular systems.

13.
Angew Chem Int Ed Engl ; 55(4): 1382-6, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26663640

RESUMO

The strongest carborane acid, H(CHB11F11), protonates CO2 while traditional mixed Lewis/Brønsted superacids do not. The product is deduced from IR spectroscopy and calculation to be the proton disolvate, H(CO2)2(+). The carborane acid H(CHB11F11) is therefore the strongest known acid. The failure of traditional mixed superacids to protonate weak bases such as CO2 can be traced to a competition between the proton and the Lewis acid for the added base. The high protic acidity promised by large absolute values of the Hammett acidity function (H0) is not realized in practice because the basicity of an added base is suppressed by Lewis acid/base adduct formation.

14.
J Phys Chem A ; 119(32): 8744-51, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26132878

RESUMO

Spin contamination in density functional studies has been identified as a cause of discrepancies between theoretical and experimental spectra of metal oxide clusters such as MoNbO2. We perform calculations to simulate the photoelectron spectra of the MoNbO2 anion using broken-symmetry density functional theory incorporating recently developed approximate projection methods. These calculations are able to account for the presence of contaminating spin states at single-reference computational cost. Results using these new tools demonstrate the significant effect of spin-contamination on geometries and force constants and show that the related errors in simulated spectra may be largely overcome by using an approximate projection model.

15.
J Chem Phys ; 142(5): 054106, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25662635

RESUMO

The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical second derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.

16.
J Chem Phys ; 141(3): 034108, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25053302

RESUMO

A spin projected double-hybrid density functional theory is presented that accounts for different scaling of opposite and same spin terms in the second order correction. This method is applied to three dissociation reactions which in the unprojected formalism exhibit significant spin contamination with higher spin states. This gives rise to a distorted potential surface and can lead to poor geometries and energies. The projected method presented is shown to improve the description of the potential over unprojected double hybrid density functional theory. Comparison is made with the reference states of the two double hybrid functionals considered here (B2PLYP and mPW2PLYP) in which the projected potential surface is degraded by an imbalance in the description of dynamic and static correlation.

17.
J Chem Theory Comput ; 10(12): 5577-85, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26583240

RESUMO

A computational protocol that combines periodic and QM/QM' calculations has been applied to investigate the structural (geometrical and electronic) and photophysical absorption properties of the salicylidene aniline (SA) thermochromic molecular crystal. The protocol consists of three different steps, namely (i) the description of the molecular crystal using a periodic approach taking into account dispersion interactions, (ii) the identification of reliable finite models (clusters), and (iii) the calculation of vertical transition energies including environmental effects through the use of an electronic embedding model (QM/QM' ONIOM approach). The encouraging results obtained in this work for the ß polymorph of SA, both in terms of accuracy and computational cost, open the way to the simulation and the prediction of the photophysical behavior of other molecular crystals, especially those much less well characterized experimentally.

18.
J Chem Phys ; 139(16): 164708, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24182065

RESUMO

An accurate first-principles treatment of complex systems, such as surfaces, continues to be a major challenge in computational chemistry. A popular approach to treat such systems is the use of cluster models, where a moderately sized model system is constructed by excising a cluster from the extended surface. This requires cutting chemical bonds, creating dangling bonds on the cluster boundary atoms that can introduce unphysical errors. Pseudobond, pseudoatom, and quantum capping potential approaches have been developed to treat such systems using a boundary "design-atom" subject to an appropriately fitted effective potential. However, previous approaches have been developed only for truncation of a single covalent bond. They may not be adequate for many important problems involving surface chemistry or materials chemistry, where multiple covalent bonds are severed between layers. In this paper, we have extended the pseudoatom formulation for divalent silicon, which can be employed to describe accurate Si(100) surface chemistry. The effective core potential parameters of our pseudoatom are obtained by fitting to geometrical parameters and atomic charges of molecules containing Si-Si and Si-O bonds, making our pseudoatom robust for applicability in different bonding environments. We calibrate the performance of our pseudoatom approach in small molecules and surface models, and also discuss its ability to describe heteroatomic bonds using multiple theoretical methods.

19.
J Chem Phys ; 138(10): 101101, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23514458

RESUMO

Spin polarized and broken symmetry density functional theory are popular approaches for treating the electronic structure of open shell systems. However, spin contamination can significantly affect the quality of predicted geometries and properties. One scheme for addressing this concern in studies involving broken-symmetry states is the approximate projection method developed by Yamaguchi and co-workers. Critical to the exploration of potential energy surfaces and the study of properties using this method will be an efficient analytic gradient theory. This communication introduces such a theory formulated, for the first time, within the framework of general post-self consistent field (SCF) derivative theory. Importantly, the approach taken here avoids the need to explicitly solve for molecular orbital derivatives of each nuclear displacement perturbation, as has been used in a recent implementation. Instead, the well-known z-vector scheme is employed and only one SCF response equation is required.

20.
J Chem Theory Comput ; 9(3): 1481-8, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-26587610

RESUMO

The reaction path connects a chemical potential energy landscape and the conceptual descriptions of chemical mechanisms and reactivity. In recent years, a class of predictor-corrector integrators has been developed and shown to provide an excellent compromise between computational efficiency and numerical accuracy. Models based on projected frequencies along the reaction path and coupling matrix elements, such as Reaction Path Hamiltonian (RPH) and Unified Reaction Valley Approach (URVA), require highly accurate integration of the reaction path. In this report, the Euler Predictor-Corrector (EulerPC) and Hessian-based Predictor-Corrector (HPC) methods are shown to be inadequate for studying reaction path curvature, which is a central component of the RPH and URVA models. The source of this apparent failure is explored, and a solution is developed. Importantly, the resulting enhanced EulerPC and HPC integrators do not require more intensive CPU or memory requirements than their predecessors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA