Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(1): e0210054, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30699126

RESUMO

Floral bilateral symmetry is one of the most important acquisitions in flower shape evolution in angiosperms. Members of Gesneriaceae possess predominantly zygomorphic flowers yet natural reversal to actinomorphy have independently evolved multiple times. The development of floral bilateral symmetry relies greatly on the gene CYCLOIDEA (CYC). Our reconstructed GCYC phylogeny indicated at least five GCYC duplication events occurred over the evolutionary history of Gesneriaceae. However, the patterns of GCYC expression following the duplications and the role of natural selection on GCYC copies in relation to floral symmetry remained largely unstudied. The Asiatic tribe Trichosporeae contains most reversals to actinomorphy. We thus investigated shifts in GCYC gene expression among selected zygomorphic species (Hemiboea bicornuta and Lysionotus pauciflorus) and species with reversals to actinomorphy (Conandron ramondioides) by RT-PCR. In the actinomorphic C. ramondioides, none of the three copies of GCYC was found expressed in petals implying that the reversal was a loss-of-function event. On the other hand, both zygomorphic species retained one GCYC1 copy that was expressed in the dorsal petals but each species utilized a different copy (GCYC1C for H. bicornuta and GCYC1D for L. pauciflorus). Together with previously published data, it appeared that GCYC1C and GCYC1D copies diversified their expression in a distinct species-specific pattern. To detect whether the selection signal (ω) changed before and after the duplication of GCYC1 in Asiatic Trichosporeae, we reconstructed a GCYC phylogeny using maximum likelihood and Bayesian inference algorithms and examined selection signals using PAML. The PAML analysis detected relaxation from selection right after the GCYC1 duplication (ωpre-duplication = 0.2819, ωpost-duplication = 0.3985) among Asiatic Trichosporeae species. We propose that the selection relaxation after the GCYC1 duplication created an "evolutionary window of flexibility" in which multiple copies were retained with randomly diverged roles for dorsal-specific expressions in association with floral symmetry changes.


Assuntos
Flores/genética , Duplicação Gênica , Genes de Plantas/genética , Magnoliopsida/genética , Seleção Genética , Sequência de Aminoácidos , Evolução Molecular , Flores/anatomia & histologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Variação Genética , Magnoliopsida/classificação , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética
2.
Bot Stud ; 59(1): 24, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374786

RESUMO

BACKGROUND: Bilateral symmetry flower (zygomorphy) is the ancestral state for Gesneriaceae species. Yet independent reversions to actinomorphy have been parallelly evolved in several lineages. Conandron ramondioides is a natural radially symmetrical species survived in dense shade mountainous habitats where specialist pollinators are scarce. Whether the mutations in floral symmetry genes such as CYC, RAD and DIV genes, or their expression pattern shifts contribute to the reversion to actinomorphy in C. ramondioides thus facilitating shifts to generalist pollinators remain to be investigated. To address this, we isolated putative orthologues of these genes and relate their expressions to developmental stages of flower actinomorphy. RESULTS: Tissue specific RT-PCR found no dorsal identity genes CrCYCs and CrRADs expression in petal and stamen whorls, while the ventral identity gene CrDIV was expressed in all petals. Thus, ventralized actinomorphy is evolved in C. ramondioides. However, CrCYCs still persists their expression in sepal whorl. This is congruent with previous findings that CYC expression in sepals is an ancestral state common to both actinomorphic and zygomorphic core Eudicot species. CONCLUSIONS: The loss of dorsal identity genes CrCYCs and CrRADs expression in petal and stamen whorl without mutating these genes specifies that a novel regulation change, possibly on cis-elements of these genes, has evolved to switch zygomorphy to actinomorphy.

3.
Front Plant Sci ; 9: 1008, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158940

RESUMO

With the growing demand for its ornamental uses, the African violet (Saintpaulia ionantha) has been popular owing to its variations in color, shape and its rapid responses to artificial selection. Wild type African violet (WT) is characterized by flowers with bilateral symmetry yet reversals showing radially symmetrical flowers such as dorsalized actinomorphic (DA) and ventralized actinomorphic (VA) peloria are common. Genetic crosses among WT, DA, and VA revealed that these floral symmetry transitions are likely to be controlled by three alleles at a single locus in which the levels of dominance are in a hierarchical fashion. To investigate whether the floral symmetry gene was responsible for these reversals, orthologs of CYCLOIDEA (CYC) were isolated and their expressions correlated to floral symmetry transitions. Quantitative RT-PCR and in situ results indicated that dorsal-specific CYCs expression in WT S. ionantha (SiCYC and SiCYC1B) shifted in DA with a heterotopically extended expression to all petals, but in VA, SiCYC1s' dorsally specific expressions were greatly reduced. Selection signature analysis revealed that the major high-expressed copy of SiCYC had been constrained under purifying selection, whereas the low-expressed helper SiCYC1B appeared to be relaxed under purifying selection after the duplication into SiCYC and SiCYC1B. Heterologous expression of SiCYC in Arabdiopsis showed petal growth retardation which was attributed to limited cell proliferation. While expression shifts of SiCYC and SiCYC1B correlate perfectly to the resulting symmetry phenotype transitions in F1s of WT and DA, there is no certain allelic combination of inherited SiCYC1s associated with specific symmetry phenotypes. This floral transition indicates that although the expression shifts of SiCYC/1B are responsible for the two contrasting actinomorphic reversals in African violet, they are likely to be controlled by upstream trans-acting factors or epigenetic regulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA