Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Bone Miner Res ; 34(7): 1284-1296, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30888730

RESUMO

Hip geometry is an important predictor of fracture. We performed a meta-analysis of GWAS studies in adults to identify genetic variants that are associated with proximal femur geometry phenotypes. We analyzed four phenotypes: (i) femoral neck length; (ii) neck-shaft angle; (iii) femoral neck width, and (iv) femoral neck section modulus, estimated from DXA scans using algorithms of hip structure analysis. In the Discovery stage, 10 cohort studies were included in the fixed-effect meta-analysis, with up to 18,719 men and women ages 16 to 93 years. Association analyses were performed with ∼2.5 million polymorphisms under an additive model adjusted for age, body mass index, and height. Replication analyses of meta-GWAS significant loci (at adjusted genomewide significance [GWS], threshold p ≤ 2.6 × 10-8 ) were performed in seven additional cohorts in silico. We looked up SNPs associated in our analysis, for association with height, bone mineral density (BMD), and fracture. In meta-analysis (combined Discovery and Replication stages), GWS associations were found at 5p15 (IRX1 and ADAMTS16); 5q35 near FGFR4; at 12p11 (in CCDC91); 11q13 (near LRP5 and PPP6R3 (rs7102273)). Several hip geometry signals overlapped with BMD, including LRP5 (chr. 11). Chr. 11 SNP rs7102273 was associated with any-type fracture (p = 7.5 × 10-5 ). We used bone transcriptome data and discovered several significant eQTLs, including rs7102273 and PPP6R3 expression (p = 0.0007), and rs6556301 (intergenic, chr.5 near FGFR4) and PDLIM7 expression (p = 0.005). In conclusion, we found associations between several genes and hip geometry measures that explained 12% to 22% of heritability at different sites. The results provide a defined set of genes related to biological pathways relevant to BMD and etiology of bone fragility. © 2019 American Society for Bone and Mineral Research.

2.
Am J Clin Nutr ; 109(2): 276-287, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30721968

RESUMO

Background: Lean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass. Objectives: To determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci. Methods: We performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age2, and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms). Results: Seven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as "sumo wrestler" loci (FTO and MC4R). In contrast, loci with an impact specifically on LM were termed "body builder" loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in "body builder" loci were associated with metabolic protection. Conclusions: In conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.


Assuntos
Tecido Adiposo/metabolismo , Composição Corporal/genética , Compartimentos de Líquidos Corporais/metabolismo , Músculo Esquelético/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas ADAMTS/genética , Absorciometria de Fóton , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Impedância Elétrica , Grupo com Ancestrais do Continente Europeu/genética , Proteínas da Matriz Extracelular/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Ligação a RNA/genética , Receptor Tipo 4 de Melanocortina/genética , Versicanas/genética , Adulto Jovem
3.
J Neural Transm (Vienna) ; 126(1): 35-45, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30610379

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are first-line antidepressants for the treatment of major depressive disorder (MDD). However, treatment response during an initial therapeutic trial is often poor and is difficult to predict. Heterogeneity of response to SSRIs in depressed patients is partly driven by co-occurring somatic disorders such as coronary artery disease (CAD) and obesity. CAD and obesity may also be associated with metabolic side effects of SSRIs. In this study, we assessed the association of CAD and obesity with treatment response to SSRIs in patients with MDD using a polygenic score (PGS) approach. Additionally, we performed cross-trait meta-analyses to pinpoint genetic variants underpinnings the relationship of CAD and obesity with SSRIs treatment response. First, PGSs were calculated at different p value thresholds (PT) for obesity and CAD. Next, binary logistic regression was applied to evaluate the association of the PGSs to SSRIs treatment response in a discovery sample (ISPC, N = 865), and in a replication cohort (STAR*D, N = 1,878). Finally, a cross-trait GWAS meta-analysis was performed by combining summary statistics. We show that the PGSs for CAD and obesity were inversely associated with SSRIs treatment response. At the most significant thresholds, the PGS for CAD and body mass index accounted 1.3%, and 0.8% of the observed variability in treatment response to SSRIs, respectively. In the cross-trait meta-analyses, we identified (1) 14 genetic loci (including NEGR1, CADM2, PMAIP1, PARK2) that are associated with both obesity and SSRIs treatment response; (2) five genetic loci (LINC01412, PHACTR1, CDKN2B, ATXN2, KCNE2) with effects on CAD and SSRIs treatment response. Our findings implicate that the genetic variants of CAD and obesity are linked to SSRIs treatment response in MDD. A better SSRIs treatment response might be achieved through a stratified allocation of treatment for MDD patients with a genetic risk for obesity or CAD.

4.
Mol Psychiatry ; 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626913

RESUMO

Although a genetic basis of depression has been well established in twin studies, identification of genome-wide significant loci has been difficult. We hypothesized that bivariate analyses of findings from a meta-analysis of genome-wide association studies (meta-GWASs) of the broad depression phenotype with those from meta-GWASs of self-reported and recurrent major depressive disorder (MDD), bipolar disorder and schizophrenia would enhance statistical power to identify novel genetic loci for depression. LD score regression analyses were first used to estimate the genetic correlations of broad depression with self-reported MDD, recurrent MDD, bipolar disorder and schizophrenia. Then, we performed four bivariate GWAS analyses. The genetic correlations (rg ± SE) of broad depression with self-reported MDD, recurrent MDD, bipolar disorder and schizophrenia were 0.79 ± 0.07, 0.24 ± 0.08, 0.53 ± 0.09 and 0.57 ± 0.05, respectively. From a total of 20 independent genome-wide significant loci, 13 loci replicated of which 8 were novel for depression. These were MUC21 for the broad depression phenotype with self-reported MDD and ZNF804A, MIR3143, PSORS1C2, STK19, SPATA31D1, RTN1 and TCF4 for the broad depression phenotype with schizophrenia. Post-GWAS functional analyses of these loci revealed their potential biological involvement in psychiatric disorders. Our results emphasize the genetic similarities among different psychiatric disorders and indicate that cross-disorder analyses may be the best way forward to accelerate gene finding for depression, or psychiatric disorders in general.

6.
Clin Epigenetics ; 10(1): 160, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30587242

RESUMO

BACKGROUND: Psoriasis (Ps) is a common chronic inflammatory skin disease. The keratinocytes of psoriatic skin defy normal apoptosis and exhibit active cell proliferation. Aberrant DNA methylation (DNAm) has been suggested relevant through regulating the expression of Ps susceptibility genes. However, it is unclear whether the biological age inferred from DNA methylome is affected. RESULTS: To address the above issue, we applied a recently developed methylation clock model to our Chinese Han population dataset, which includes DNAm data of 114 involved psoriatic skin tissues (PP) and 41 uninvolved psoriatic skin tissues (PN) from Ps patients, and 62 normal skin tissues (NN) from health controls. We first confirmed the applicability of the clock in PN and NN. We then showed that PP samples have largely unchanged DNAm age, and that no association was observed between available clinical features and DNAm age acceleration. Examination of genome-wide CpGs yielded age-associated CpGs with concordant age-association coefficients among the three groups, which was also supported by an external dataset. We also interestingly observed two clock CpGs differentially methylated between PP and PN. CONCLUSIONS: Overall, our results suggest no significant alteration in DNAm age in PN and PP. Therefore, the increase in keratinocyte proliferation and alteration in DNAm caused by Ps may not affect the biological age of psoriatic skin tissue.


Assuntos
Envelhecimento/genética , Metilação de DNA , Epigenômica/métodos , Psoríase/genética , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
J Hum Hypertens ; 32(11): 781-788, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30283089

RESUMO

This study was conducted to explore interactions in the association of the kininogen (KNG1) Ile197Met polymorphism and gender with plasma concentrations of irbesartan in Chinese patients with essential hypertension. A total of 1100 subjects with essential hypertension received a daily oral dose of 150 mg irbesartan for twenty-eight consecutive days. High-performance liquid chromatography-fluorescence (HPLC) was used to detect plasma irbesartan concentrations on day 28. The KNG1 Ile197Met gene polymorphism was determined using high-throughput TaqMan technology. The frequency distribution of KNG1 Ile197Met genotype conformed to the Hardy-Weinberg equilibrium. After 28 days of treatment, patients with the GG genotype had significantly lower irbesartan concentrations (P = 0.033) compared to homozygous TT genotype carriers. After stratifying by gender, male G allele carriers had significantly lower irbesartan concentrations (GG, P = 0.015; TG, P = 0.015, respectively) relative to TT genotype after adjusting for age, region, body mass index (BMI), smoking, and alcohol consumption. However, there was no significant difference in female subjects. A further test for a multiplicative interaction between the KNG1 Ile197Met polymorphism and gender in association with ln-plasma irbesartan concentrations in a multiple linear regression model was also significant (P for interaction = 0.033). This is the first study to suggest that gender may influence the association of the Ile197Met variant of KNG1 with ln-plasma irbesartan concentration. This finding may indicate that the interaction of gender and the KNG1 Ile197Met gene polymorphism can influence plasma trough irbesartan concentrations, which may contribute to a better development of personalized hypertensive treatment in Chinese patients.

8.
Clin Appl Thromb Hemost ; : 1076029618805863, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30336686

RESUMO

Our goal was to examine the associations of the 388A>G and 521T>C polymorphisms in the solute carrier organic anion transporter 1B1 (SLCO1B1) gene with hepatic function, baseline lipid levels, and the lipid-lowering efficiency of simvastatin. We recruited 542 patients with hyperlipidemia. The 388A>G and 521T>C polymorphisms were genotyped. Serum alanine aminotransferase (ALT) and aspartate transaminase (AST), Serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were measured before and after an oral 20-mg dose of simvastatin. Individuals with the 388AA genotype had higher ALT and AST levels than those with the 388AG or 388GG genotypes (P = .037 and P = .002, respectively). Individuals with both the 388AA and the 521TT genotypes had the highest levels of ALT and AST (P = .001 and P = .001, respectively). Moreover, we divided all patients into normal and abnormal subgroups based on elevated ALT and AST values (≥ 40 U/L), participants in the abnormal subgroup had a higher frequency of the 388A/521T haplotype and a lower frequency of the 388G/521T haplotype compared to those in the normal subgroup. In addition, compared to 388G allele and 521C allele carriers, individuals with the 388G allele and 521TT genotype carriers had greater TC and LDL-C reduction in response to simvastatin after 4 weeks of treatment. Our conclusion suggests that the interaction between the SLCO1B1 388A>G and 521T>C polymorphisms could be an important genetic determinant of hepatic function and the therapeutic efficiency of simvastatin in Chinese patients with hyperlipidemia.

9.
Front Genet ; 9: 267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127800

RESUMO

Lumbar disc degeneration (LDD) is age-related break-down in the fibrocartilaginous joints between lumbar vertebrae. It is a major cause of low back pain and is conventionally assessed by magnetic resonance imaging (MRI). Like most other complex traits, LDD is likely polygenic and influenced by both genetic and environmental factors. However, genome-wide association studies (GWASs) of LDD have uncovered few susceptibility loci due to the limited sample size. Previous epidemiology studies of LDD also reported multiple heritable risk factors, including height, body mass index (BMI), bone mineral density (BMD), lipid levels, etc. Genetics can help elucidate causality between traits and suggest loci with pleiotropic effects. One such approach is polygenic score (PGS) which summarizes the effect of multiple variants by the summation of alleles weighted by estimated effects from GWAS. To investigate genetic overlaps of LDD and related heritable risk factors, we calculated the PGS of height, BMI, BMD and lipid levels in a Chinese population-based cohort with spine MRI examination and a Japanese case-control cohort of lumbar disc herniation (LDH) requiring surgery. Because most large-scale GWASs were done in European populations, PGS of corresponding traits were created using weights from European GWASs. We calibrated their prediction performance in independent Chinese samples, then tested associations with MRI-derived LDD scores and LDH affection status. The PGS of height, BMI, BMD and lipid levels were strongly associated with respective phenotypes in Chinese, but phenotype variances explained were lower than in Europeans which would reduce the power to detect genetic overlaps. Despite of this, the PGS of BMI and lumbar spine BMD were significantly associated with LDD scores; and the PGS of height was associated with the increased the liability of LDH. Furthermore, linkage disequilibrium score regression suggested that, osteoarthritis, another degenerative disorder that shares common features with LDD, also showed genetic correlations with height, BMI and BMD. The findings suggest a common key contribution of biomechanical stress to the pathogenesis of LDD and will direct the future search for pleiotropic genes.

10.
Front Med ; 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29623515

RESUMO

Psoriasis (Ps) is an inflammatory skin disease caused by genetic and environmental factors. Previous studies on DNA methylation (DNAm) found genetic markers that are closely associated with Ps, and evidence has shown that DNAm mediates genetic risk in Ps. In this study, Consensus Clustering was used to analyze DNAm data, and 114 Ps patients were divided into three subclassifications. Investigation of the clinical characteristics and copy number variations (CNVs) of DEFB4, IL22, and LCE3C in the three subclassifications revealed no significant differences in gender ratio and in Ps area and severity index (PASI) score. The proportion of late-onset ( ⩾ 40 years) Ps patients was significantly higher in type I than in types II and III (P = 0.035). Type III contained the smallest proportion of smokers and the largest proportion of non-smoking Ps patients (P = 0.086). The CNVs of DEFB4 and LCE3C showed no significant differences but the CNV of IL22 significantly differed among the three subclassifications (P = 0.044). This study is the first to profile Ps subclassifications based on DNAm data in the Chinese Han population. These results are useful in the treatment and management of Ps from the molecular and genetic perspectives.

11.
Front Psychiatry ; 9: 65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559929

RESUMO

Studies reported a strong genetic correlation between the Big Five personality traits and major depressive disorder (MDD). Moreover, personality traits are thought to be associated with response to antidepressants treatment that might partly be mediated by genetic factors. In this study, we examined whether polygenic scores (PGSs) derived from the Big Five personality traits predict treatment response and remission in patients with MDD who were prescribed selective serotonin reuptake inhibitors (SSRIs). In addition, we performed meta-analyses of genome-wide association studies (GWASs) on these traits to identify genetic variants underpinning the cross-trait polygenic association. The PGS analysis was performed using data from two cohorts: the Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS, n = 529) and the International SSRI Pharmacogenomics Consortium (ISPC, n = 865). The cross-trait GWAS meta-analyses were conducted by combining GWAS summary statistics on SSRIs treatment outcome and on the personality traits. The results showed that the PGS for openness and neuroticism were associated with SSRIs treatment outcomes at p < 0.05 across PT thresholds in both cohorts. A significant association was also found between the PGS for conscientiousness and SSRIs treatment response in the PGRN-AMPS sample. In the cross-trait GWAS meta-analyses, we identified eight loci associated with (a) SSRIs response and conscientiousness near YEATS4 gene and (b) SSRI remission and neuroticism eight loci near PRAG1, MSRA, XKR6, ELAVL2, PLXNC1, PLEKHM1, and BRUNOL4 genes. An assessment of a polygenic load for personality traits may assist in conjunction with clinical data to predict whether MDD patients might respond favorably to SSRIs.

12.
Clin Exp Hypertens ; 40(3): 207-212, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29436860

RESUMO

OBJECTIVE: To confirm the association between baseline blood pressure (BP) levels and the methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism in patients with essential hypertension. METHODS: A total of 347 patients were enrolled from the Dongzhi community in Anhui Province, China. The C677T polymorphism of the MTHFR gene was detected using high-throughput TaqMan allelic discrimination assay. Baseline BP was measured using a standardized mercury-gravity monometer. RESULTS: In the whole sample, the frequency of the MTHFR C677T genotypes CC, CT, and TT were 38.6%, 48.1%, and 13.3%, respectively. In a recessive model (CC+CT versus TT genotypes), baseline diastolic blood pressure (DBP) was significantly higher in patients with the TT genotype compared to those with the CT or CC genotypes (P= 0.013). We also divided all patients into three groups based on the tertiles of the baseline BP distribution. Compared to subjects in the lowest tertile of DBP, the adjusted odds of having the TT genotype among subjects in the highest tertile was 2.6 (95% CI: 1.1 to 6.2). However, no significant associations were observed between baseline systolic blood pressure (SBP) and the MTHFR C677T polymorphism. CONCLUSIONS: The MTHFR gene polymorphism could be an important genetic determinant of baseline DBP levels in Chinese essential hypertensive patients.


Assuntos
Grupo com Ancestrais do Continente Asiático/genética , Pressão Sanguínea/genética , Hipertensão Essencial/genética , Hipertensão Essencial/fisiopatologia , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Adulto , Alelos , China , Diástole/genética , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Sístole/genética
13.
Mol Psychiatry ; 23(11): 2133-2144, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29311653

RESUMO

Cognitive functions are important correlates of health outcomes across the life-course. Individual differences in cognitive functions are partly heritable. Epigenetic modifications, such as DNA methylation, are susceptible to both genetic and environmental factors and may provide insights into individual differences in cognitive functions. Epigenome-wide meta-analyses for blood-based DNA methylation levels at ~420,000 CpG sites were performed for seven measures of cognitive functioning using data from 11 cohorts. CpGs that passed a Bonferroni correction, adjusting for the number of CpGs and cognitive tests, were assessed for: longitudinal change; being under genetic control (methylation QTLs); and associations with brain health (structural MRI), brain methylation and Alzheimer's disease pathology. Across the seven measures of cognitive functioning (meta-analysis n range: 2557-6809), there were epigenome-wide significant (P < 1.7 × 10-8) associations for global cognitive function (cg21450381, P = 1.6 × 10-8), and phonemic verbal fluency (cg12507869, P = 2.5 × 10-9). The CpGs are located in an intergenic region on chromosome 12 and the INPP5A gene on chromosome 10, respectively. Both probes have moderate correlations (~0.4) with brain methylation in Brodmann area 20 (ventral temporal cortex). Neither probe showed evidence of longitudinal change in late-life or associations with white matter brain MRI measures in one cohort with these data. A methylation QTL analysis suggested that rs113565688 was a cis methylation QTL for cg12507869 (P = 5 × 10-5 and 4 × 10-13 in two lookup cohorts). We demonstrate a link between blood-based DNA methylation and measures of phonemic verbal fluency and global cognitive ability. Further research is warranted to understand the mechanisms linking genomic regulatory changes with cognitive function to health and disease.

14.
Nat Commun ; 9(1): 260, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343764

RESUMO

Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7×10-9 at rs8018720 in SEC23A, and P = 1.9×10-14 at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levels.

15.
Psychosom Med ; 80(3): 242-251, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29280852

RESUMO

OBJECTIVE: Shared genetic background may explain phenotypic associations between depression and Type 2 diabetes (T2D). We aimed to study, on a genome-wide level, if genetic correlation and pleiotropic loci exist between depressive symptoms and T2D or glycemic traits. METHODS: We estimated single-nucleotide polymorphism (SNP)-based heritability and analyzed genetic correlation between depressive symptoms and T2D and glycemic traits with the linkage disequilibrium score regression by combining summary statistics of previously conducted meta-analyses for depressive symptoms by CHARGE consortium (N = 51,258), T2D by DIAGRAM consortium (N = 34,840 patients and 114,981 controls), fasting glucose, fasting insulin, and homeostatic model assessment of ß-cell function and insulin resistance by MAGIC consortium (N = 58,074). Finally, we investigated pleiotropic loci using a bivariate genome-wide association study approach with summary statistics from genome-wide association study meta-analyses and reported loci with genome-wide significant bivariate association p value (p < 5 × 10). Biological annotation and function of significant pleiotropic SNPs were assessed in several databases. RESULTS: The SNP-based heritability ranged from 0.04 to 0.10 in each individual trait. In the linkage disequilibrium score regression analyses, depressive symptoms showed no significant genetic correlation with T2D or glycemic traits (p > 0.37). However, we identified pleiotropic genetic variations for depressive symptoms and T2D (in the IGF2BP2, CDKAL1, CDKN2B-AS, and PLEKHA1 genes), and fasting glucose (in the MADD, CDKN2B-AS, PEX16, and MTNR1B genes). CONCLUSIONS: We found no significant overall genetic correlations between depressive symptoms, T2D, or glycemic traits suggesting major differences in underlying biology of these traits. However, several potential pleiotropic loci were identified between depressive symptoms, T2D, and fasting glucose, suggesting that previously established phenotypic associations may be partly explained by genetic variation in these specific loci.

16.
JAMA Psychiatry ; 75(1): 65-74, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29121268

RESUMO

Importance: Lithium is a first-line mood stabilizer for the treatment of bipolar affective disorder (BPAD). However, the efficacy of lithium varies widely, with a nonresponse rate of up to 30%. Biological response markers are lacking. Genetic factors are thought to mediate treatment response to lithium, and there is a previously reported genetic overlap between BPAD and schizophrenia (SCZ). Objectives: To test whether a polygenic score for SCZ is associated with treatment response to lithium in BPAD and to explore the potential molecular underpinnings of this association. Design, Setting, and Participants: A total of 2586 patients with BPAD who had undergone lithium treatment were genotyped and assessed for long-term response to treatment between 2008 and 2013. Weighted SCZ polygenic scores were computed at different P value thresholds using summary statistics from an international multicenter genome-wide association study (GWAS) of 36 989 individuals with SCZ and genotype data from patients with BPAD from the Consortium on Lithium Genetics. For functional exploration, a cross-trait meta-GWAS and pathway analysis was performed, combining GWAS summary statistics on SCZ and response to treatment with lithium. Data analysis was performed from September 2016 to February 2017. Main Outcomes and Measures: Treatment response to lithium was defined on both the categorical and continuous scales using the Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder score. The effect measures include odds ratios and the proportion of variance explained. Results: Of the 2586 patients in the study (mean [SD] age, 47.2 [13.9] years), 1478 were women and 1108 were men. The polygenic score for SCZ was inversely associated with lithium treatment response in the categorical outcome, at a threshold P < 5 × 10-2. Patients with BPAD who had a low polygenic load for SCZ responded better to lithium, with odds ratios for lithium response ranging from 3.46 (95% CI, 1.42-8.41) at the first decile to 2.03 (95% CI, 0.86-4.81) at the ninth decile, compared with the patients in the 10th decile of SCZ risk. In the cross-trait meta-GWAS, 15 genetic loci that may have overlapping effects on lithium treatment response and susceptibility to SCZ were identified. Functional pathway and network analysis of these loci point to the HLA antigen complex and inflammatory cytokines. Conclusions and Relevance: This study provides evidence for a negative association between high genetic loading for SCZ and poor response to lithium in patients with BPAD. These results suggest the potential for translational research aimed at personalized prescribing of lithium.

17.
Ann Rheum Dis ; 77(3): 378-385, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29170203

RESUMO

OBJECTIVES: To identify genetic determinants of susceptibility to clinical vertebral fractures, which is an important complication of osteoporosis. METHODS: Here we conduct a genome-wide association study in 1553 postmenopausal women with clinical vertebral fractures and 4340 controls, with a two-stage replication involving 1028 cases and 3762 controls. Potentially causal variants were identified using expression quantitative trait loci (eQTL) data from transiliac bone biopsies and bioinformatic studies. RESULTS: A locus tagged by rs10190845 was identified on chromosome 2q13, which was significantly associated with clinical vertebral fracture (P=1.04×10-9) with a large effect size (OR 1.74, 95% CI 1.06 to 2.6). Bioinformatic analysis of this locus identified several potentially functional SNPs that are associated with expression of the positional candidate genes TTL (tubulin tyrosine ligase) and SLC20A1 (solute carrier family 20 member 1). Three other suggestive loci were identified on chromosomes 1p31, 11q12 and 15q11. All these loci were novel and had not previously been associated with bone mineral density or clinical fractures. CONCLUSION: We have identified a novel genetic variant that is associated with clinical vertebral fractures by mechanisms that are independent of BMD. Further studies are now in progress to validate this association and evaluate the underlying mechanism.

18.
Clin Appl Thromb Hemost ; 24(5): 771-779, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28891316

RESUMO

We conducted a cross-sectional study to investigate the effects of the adenosine triphosphate-binding cassette transporter 1 (ABCA1) I883M and lipoprotein lipase (LPL) HindIII polymorphisms on lipid levels in patients with hyperlipidemia. A total of 533 patients were enrolled. Serum lipid parameters were determined by an automatic biochemistry analyzer. Genotyping of the ABCA1 I883M and LPL HindIII was carried out using the polymerase chain reaction-restriction fragment length polymorphism technique. Multiple linear regression analysis was used to estimate the associations between serum lipid levels and the genetic polymorphisms. The frequency distribution of the ABCA1 I883M and LPL HindIII polymorphisms did not deviate from Hardy-Weinberg equilibrium. The major finding of our regression analysis showed that neither the ABCA1 I883M nor the LPL HindIII polymorphism was associated with baseline serum lipid levels in the total population. However, among patients with elevated alanine aminotransferase (ALT) levels (ALT ≥ 40 U/L), carriers of the M allele of the ABCA1 gene had lower levels of high-density lipoprotein cholesterol (HDL-C) and higher levels of low-density lipoprotein cholesterol (LDL-C) after adjusting for age, sex, smoking status, alcohol consumption, education level, occupation, and work intensity ( P < .05 for both). A test on interaction terms between the ABCA1 I833M polymorphism and ALT on HDL-C and LDL-C levels also remained significant ( P = .001 and P = .014, respectively). Our data suggest that there are significant interactive effects between ABCA1 I883M and ALT levels on HDL-C and LDL-C levels. However, the LPL HindIII polymorphism did not influence lipid levels.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Hiperlipidemias/genética , Lipídeos/sangue , Lipoproteínas LDL/genética , Polimorfismo Genético , Alanina Transaminase/sangue , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Humanos
20.
Am J Hum Genet ; 101(2): 227-238, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28757204

RESUMO

Vitamin D insufficiency is common, correctable, and influenced by genetic factors, and it has been associated with risk of several diseases. We sought to identify low-frequency genetic variants that strongly increase the risk of vitamin D insufficiency and tested their effect on risk of multiple sclerosis, a disease influenced by low vitamin D concentrations. We used whole-genome sequencing data from 2,619 individuals through the UK10K program and deep-imputation data from 39,655 individuals genotyped genome-wide. Meta-analysis of the summary statistics from 19 cohorts identified in CYP2R1 the low-frequency (minor allele frequency = 2.5%) synonymous coding variant g.14900931G>A (p.Asp120Asp) (rs117913124[A]), which conferred a large effect on 25-hydroxyvitamin D (25OHD) levels (-0.43 SD of standardized natural log-transformed 25OHD per A allele; p value = 1.5 × 10-88). The effect on 25OHD was four times larger and independent of the effect of a previously described common variant near CYP2R1. By analyzing 8,711 individuals, we showed that heterozygote carriers of this low-frequency variant have an increased risk of vitamin D insufficiency (odds ratio [OR] = 2.2, 95% confidence interval [CI] = 1.78-2.78, p = 1.26 × 10-12). Individuals carrying one copy of this variant also had increased odds of multiple sclerosis (OR = 1.4, 95% CI = 1.19-1.64, p = 2.63 × 10-5) in a sample of 5,927 case and 5,599 control subjects. In conclusion, we describe a low-frequency CYP2R1 coding variant that exerts the largest effect upon 25OHD levels identified to date in the general European population and implicates vitamin D in the etiology of multiple sclerosis.


Assuntos
Colestanotriol 26-Mono-Oxigenase/genética , Família 2 do Citocromo P450/genética , Predisposição Genética para Doença/genética , Esclerose Múltipla/genética , Deficiência de Vitamina D/diagnóstico , Deficiência de Vitamina D/genética , Vitamina D/análogos & derivados , Frequência do Gene , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Humanos , Esclerose Múltipla/etiologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Vitamina D/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA