Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Am J Hum Genet ; 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33609447

RESUMO

Determination of the clinical relevance of rare germline variants of uncertain significance (VUSs) in the BRCA2 cancer predisposition gene remains a challenge as a result of limited availability of data for use in classification models. However, laboratory-based functional data derived from validated functional assays of known sensitivity and specificity may influence the interpretation of VUSs. We evaluated 252 missense VUSs from the BRCA2 DNA-binding domain by using a homology-directed DNA repair (HDR) assay and identified 90 as non-functional and 162 as functional. The functional assay results were integrated with other available data sources into an ACMG/AMP rules-based classification framework used by a hereditary cancer testing laboratory. Of the 186 missense variants observed by the testing laboratory, 154 were classified as VUSs without functional data. However, after applying protein functional data, 86% (132/154) of the VUSs were reclassified as either likely pathogenic/pathogenic (39/132) or likely benign/benign (93/132), which impacted testing results for 1,900 individuals. These results indicate that validated functional assay data can have a substantial impact on VUS classification and associated clinical management for many individuals with inherited alterations in BRCA2.

2.
ACS Appl Mater Interfaces ; 13(4): 4825-4834, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33496168

RESUMO

Ultrasound (US)-induced sonodynamic therapy (SDT) is an efficient and precise method against tumor, and the integration of multiple cancer therapies has been proved as a promising strategy for better therapeutic effects. Herein, for the first time, a multifunctional nanoreactor has been fabricated by integrating Fe-MIL-88B-NH2, PFC-1, and glucose oxidase (GOx) to form urchin-like Fe-MIL-88B-NH2@PFC-1-GOx (MPG) nanoparticles as Fenton's reagent, a sonosensitizer, and a tumor microenvironment (TME) modulator. In detail, MPG can generate •OH for chemodynamic therapy (CDT) and deplete glutathione (GSH) to alleviate the antioxidant ability of cancer cells. Moreover, catalase (CAT)-like MPG can react with H2O2 to generate O2 for relieving hypoxia in TME, enhancing GOx-catalyzed glucose oxidation to produce H2O2 and gluconic acid. Then, the regenerated H2O2 can promote the Fenton reaction to achieve GOx catalysis-enhanced CDT. Owing to its large π-electron conjugated system, MPG also serves as an ideal sonosensitizer, realizing a burst generation of 1O2 under US irradiation for efficient SDT. Therefore, the tumor treatment will be notably enhanced by MPG-based synergetic CDT/SDT/starvation therapy via a series of cascade reactions. Overall, this work develops a versatile nanoreactor with improved tumor treatment effectiveness and broadens the application prospects of porous materials in the field of biomedical research.

3.
N Engl J Med ; 384(5): 440-451, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33471974

RESUMO

BACKGROUND: Population-based estimates of the risk of breast cancer associated with germline pathogenic variants in cancer-predisposition genes are critically needed for risk assessment and management in women with inherited pathogenic variants. METHODS: In a population-based case-control study, we performed sequencing using a custom multigene amplicon-based panel to identify germline pathogenic variants in 28 cancer-predisposition genes among 32,247 women with breast cancer (case patients) and 32,544 unaffected women (controls) from population-based studies in the Cancer Risk Estimates Related to Susceptibility (CARRIERS) consortium. Associations between pathogenic variants in each gene and the risk of breast cancer were assessed. RESULTS: Pathogenic variants in 12 established breast cancer-predisposition genes were detected in 5.03% of case patients and in 1.63% of controls. Pathogenic variants in BRCA1 and BRCA2 were associated with a high risk of breast cancer, with odds ratios of 7.62 (95% confidence interval [CI], 5.33 to 11.27) and 5.23 (95% CI, 4.09 to 6.77), respectively. Pathogenic variants in PALB2 were associated with a moderate risk (odds ratio, 3.83; 95% CI, 2.68 to 5.63). Pathogenic variants in BARD1, RAD51C, and RAD51D were associated with increased risks of estrogen receptor-negative breast cancer and triple-negative breast cancer, whereas pathogenic variants in ATM, CDH1, and CHEK2 were associated with an increased risk of estrogen receptor-positive breast cancer. Pathogenic variants in 16 candidate breast cancer-predisposition genes, including the c.657_661del5 founder pathogenic variant in NBN, were not associated with an increased risk of breast cancer. CONCLUSIONS: This study provides estimates of the prevalence and risk of breast cancer associated with pathogenic variants in known breast cancer-predisposition genes in the U.S. population. These estimates can inform cancer testing and screening and improve clinical management strategies for women in the general population with inherited pathogenic variants in these genes. (Funded by the National Institutes of Health and the Breast Cancer Research Foundation.).


Assuntos
Neoplasias da Mama/genética , Predisposição Genética para Doença/genética , Variação Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Razão de Chances , Risco , Análise de Sequência de DNA , Adulto Jovem
4.
Blood ; 137(4): 513-523, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33507295

RESUMO

Chromosome region maintenance protein 1 (CRM1) mediates protein export from the nucleus and is a new target for anticancer therapeutics. Broader application of KPT-330 (selinexor), a first-in-class CRM1 inhibitor recently approved for relapsed multiple myeloma and diffuse large B-cell lymphoma, have been limited by substantial toxicity. We discovered that salicylates markedly enhance the antitumor activity of CRM1 inhibitors by extending the mechanisms of action beyond CRM1 inhibition. Using salicylates in combination enables targeting of a range of blood cancers with a much lower dose of selinexor, thereby potentially mitigating prohibitive clinical adverse effects. Choline salicylate (CS) with low-dose KPT-330 (K+CS) had potent, broad activity across high-risk hematological malignancies and solid-organ cancers ex vivo and in vivo. The K+CS combination was not toxic to nonmalignant cells as compared with malignant cells and was safe without inducing toxicity to normal organs in mice. Mechanistically, compared with KPT-330 alone, K+CS suppresses the expression of CRM1, Rad51, and thymidylate synthase proteins, leading to more efficient inhibition of CRM1-mediated nuclear export, impairment of DNA-damage repair, reduced pyrimidine synthesis, cell-cycle arrest in S-phase, and cell apoptosis. Moreover, the addition of poly (ADP-ribose) polymerase inhibitors further potentiates the K+CS antitumor effect. K+CS represents a new class of therapy for multiple types of blood cancers and will stimulate future investigations to exploit DNA-damage repair and nucleocytoplasmic transport for cancer therapy in general.

5.
Blood ; 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140103

RESUMO

Chromosome region maintenance protein1 (CRM1) mediates protein export from the nucleus and is a new target for anti-cancer therapeutics. Broader application of KPT-330 (selinexor), a first in class CRM1 inhibitor recently approved for relapsed multiple myeloma and diffuse large B-cell lymphoma, have been limited by substantial toxicity. We discovered that salicylates markedly enhance the anti-tumor activity of CRM1 inhibitors by extending the mechanisms of action beyond CRM1 inhibition. Using salicylates in combination enables targeting of a range of blood cancers with a much lower dose of selinexor, thereby potentially mitigating prohibitive clinical adverse effects. Choline salicylate (CS) with low-dose KPT-330 (K+CS) had potent, broad activity across high-risk hematological malignancies and solid organ cancers ex vivo and in vivo. The K+CS combination was not toxic to non-malignant cells as compared to malignant cells and was safe without inducing toxicity to normal organs in mice. Mechanistically, compared to KPT-330 alone, K+CS suppresses the expression of CRM1, Rad51 and thymidylate synthase proteins, leading to more efficient inhibition of CRM1-mediated nuclear export, impairment of DNA-damage repair, reduced pyrimidine synthesis, cell cycle arrest in S-phase, and cell apoptosis. Moreover, the addition of PARP inhibitors further potentiates the K+CS anti-tumor effect. K+CS represents a new class of therapy for multiple types of blood cancers and will stimulate future investigations to exploit DNA-damage repair and nucleocytoplasmic transport for cancer therapy in general.

6.
J Natl Cancer Inst ; 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33146377

RESUMO

To evaluate the racial/ethnic differences in prevalence of germline pathogenic variants (PVs) and the effect of race/ethnicity on breast cancer (BC) risk among carriers, results of multigene testing of 77,900 women with BC (Non-Hispanic White [NHW] = 57,003; Ashkenazi-Jewish = 4,798; Black = 6,722; Hispanic = 5,194; and Asian = 4,183) were analyzed and the frequency of PVs in each gene were compared between BC cases and race/ethnicity-matched gnomAD reference controls. Compared to NHWs, BRCA1 PVs were enriched in Ashkenazi-Jews and Hispanics while CHEK2 PVs were statistically significantly lower in Blacks, Hispanics, and Asians (all two-sided P< 0.05). In case-control studies BARD1 PVs were associated with high risks (Odds Ratio>4.00) of BC in Blacks, Hispanics and Asians; ATM PVs were associated with increased risk of BC among all races/ethnicities except Asians; whereas CHEK2 and BRIP1 PVs were associated with increased risk of BC among NHWs and Hispanics only. These findings suggest a need for personalized management of BC risk in PV carriers based on race/ethnicity.

7.
Clin Cancer Res ; 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028596

RESUMO

PURPOSE: To compare the clinical characteristics and overall survival (OS) of germline mutation carriers in homologous recombination repair (HRR) genes and noncarriers with pancreatic ductal adenocarcinoma (PDAC). METHODS: Germline DNA from 3,078 patients with PDAC enrolled in a prospective registry at Mayo Clinic between 2000 and 2017 was analyzed for mutations in 37 cancer predisposition genes. Characteristics and OS of patients with mutations in eight genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, PALB2, RAD51C, and RAD51D) involved in HRR were compared with patients testing negative for mutations in all 37 genes. RESULTS: The 175 HRR mutation carriers and 2,730 noncarriers in the study had a median duration of follow-up of 9.9 years. HRR mutation carriers were younger (median age at diagnosis: 63 vs. 66 years, P < 0.001) and more likely to have metastatic disease at diagnosis (46% vs. 36%, P = 0.004). In a multivariable model adjusting for sex, age at diagnosis, and tumor staging, patients with germline HRR mutations had a significantly longer OS compared with noncarriers [HR, 0.83; 95% confidence interval (CI), 0.70-0.97; P = 0.02]. Further gene-level analysis demonstrated that germline ATM mutation carriers had longer OS compared with patients without germline mutations in any of the 37 genes (HR, 0.72; 95% CI, 0.55-0.94; P = 0.01). CONCLUSIONS: This study demonstrates that germline mutation carrier status in PDAC is associated with longer OS compared with noncarriers. Further research into tumor biology and response to platinum-based chemotherapy in germline mutation carriers with PDAC are needed to better understand the association with longer OS.

8.
ACS Appl Mater Interfaces ; 12(39): 43456-43465, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32880166

RESUMO

Cancer deaths are mainly caused by tumor metastases. However, tumor ablation therapies can only target the primary tumor but not inhibit tumor metastasis. Herein, a multifunctional covalent organic framework (COF)-based nanocomposite is designed for synergetic photo-, chemodynamic- and immunotherapies. Specifically, the synthesized COF possesses the ability to produce singlet oxygen under the 650 nm laser irradiation. After being metallized with FeCl3, p-phenylenediamine is polymerized on the surface of COF with Fe3+ as the oxidant. The obtained poly(p-phenylenediamine) can be used for photothermal therapy. Meanwhile, the overexpressed H2O2 in the tumor would be further catalyzed and decomposed into hydroxyl radicals (•OH) by the Fe3+/Fe2+ redox couple via Fenton reaction. Intriguingly, the increase of temperature caused by photothermal therapy can accelerate the production of •OH. Moreover, the tumor-associated antigen induced a robust antitumor immune response and effectively inhibited tumor metastasis in the presence of anti-PD-L1 checkpoint blockade. Such a COF-based multifunctional nanoplatform provides an efficacious treatment strategy for both the primary tumor and tumor metastasis.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32954205

RESUMO

PURPOSE: Women with breast cancer have a 4%-16% lifetime risk of a second primary cancer. Whether mutations in genes other than BRCA1/2 are enriched in patients with breast and another primary cancer over those with a single breast cancer (S-BC) is unknown. PATIENTS AND METHODS: We identified pathogenic germline mutations in 17 cancer susceptibility genes in patients with BRCA1/2-negative breast cancer in 2 different cohorts: cohort 1, high-risk breast cancer program (multiple primary breast cancer [MP-BC], n = 551; S-BC, n = 449) and cohort 2, familial breast cancer research study (MP-BC, n = 340; S-BC, n = 1,464). Mutation rates in these 2 cohorts were compared with a control data set (Exome Aggregation Consortium [ExAC]). RESULTS: Overall, pathogenic mutation rates for autosomal, dominantly inherited genes were higher in patients with MP-BC versus S-BC in both cohorts (8.5% v 4.9% [P = .02] and 7.1% v 4.2% [P = .03]). There were differences in individual gene mutation rates between cohorts. In both cohorts, younger age at first breast cancer was associated with higher mutation rates; the age of non-breast cancers was unrelated to mutation rate. TP53 and MSH6 mutations were significantly enriched in patients with MP-BC but not S-BC, whereas ATM and PALB2 mutations were significantly enriched in both groups compared with ExAC. CONCLUSION: Mutation rates are at least 7% in all patients with BRCA1/2 mutation-negative MP-BC, regardless of age at diagnosis of breast cancer, with mutation rates up to 25% in patients with a first breast cancer diagnosed at age < 30 years. Our results suggest that all patients with breast cancer with a second primary cancer, regardless of age of onset, should undergo multigene panel testing.

10.
JCO Precis Oncol ; 4: 32-43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32832836

RESUMO

PURPOSE: In studies of men of European ancestry, rare pathogenic variants in DNA repair pathway genes have been shown to be associated with risk of aggressive prostate cancer. The contribution of rare coding variation to prostate cancer risk in men of African ancestry has not been established. METHODS: We sequenced a panel of 19 DNA repair and cancer predisposition genes in 2,453 African American and 1,151 Ugandan prostate cancer cases and controls. Rare variants were classified as pathogenic or putatively functionally disruptive and examined in association with prostate cancer risk and disease aggressiveness in gene and pathway-level association analyses. RESULTS: Pathogenic variants were found in 75 out of 2,098 cases (3.6%) and 31 out of 1,481 controls (2.1%) (OR=1.82, 95% CI=1.19 to 2.79, P=0.0044) with the association being stronger for more aggressive disease phenotypes (OR=3.10, 95% CI=1.54 to 6.23, P=0.0022). The highest risks for aggressive disease were observed with pathogenic variants in the ATM, BRCA2, PALB2 and NBN genes, with odds ratios ranging from ~4 to 15 in the combined study sample of African American and Ugandan men. Rare, non-pathogenic, non-synonymous variants did not have a major impact on risk of overall prostate cancer or disease aggressiveness. CONCLUSIONS: Rare pathogenic variants in DNA repair genes have appreciable effects on risk of aggressive prostate cancer in men of African ancestry. These findings have potential implications for panel testing and risk stratification in this high-risk population.

11.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G333-G344, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32683952

RESUMO

Sulfatase 2 (SULF2) is a heparan sulfate editing enzyme that regulates the milieu of growth factors and cytokines involved in a variety of cellular processes. We used a murine model of diet-induced steatohepatitis to assess the effect of SULF2 downregulation on the development of nonalcoholic steatohepatitis (NASH) and liver fibrosis. Wild-type B6;129 mice (WT) and Sulf2-knockout B6;129P2-SULF2Gt(PST111)Byg mice (Sulf2-KO) were fed a fast-food diet (FFD) rich in saturated fats, cholesterol, and fructose or a standard chow diet (SC) ad libitum for 9 mo. WT mice on FFD showed a threefold increase in hepatic Sulf2 mRNA expression, and a 2.2-fold increase in hepatic SULF2 protein expression compared with WT mice on SC. Knockout of Sulf2 led to a significant decrease in diet-mediated weight gain and dyslipidemia compared with WT mice on FFD. Knockout of Sulf2 also abrogated diet-induced steatohepatitis and hepatic fibrosis compared with WT mice on FFD. Furthermore, expression levels of the profibrogenic receptors TGFßR2 and PDGFRß were significantly decreased in Sulf2-KO mice compared with WT mice on FFD. Together, our data suggest that knockout of Sulf2 significantly downregulates dyslipidemia, steatohepatitis, and hepatic fibrosis in a diet-induced mouse model of NAFLD, suggesting that targeting of SULF2 signaling may be a potential therapeutic mechanism in NASH.NEW & NOTEWORTHY We report for the first time that in wild-type (WT) mice, fast-food diet (FFD) induced a threefold increase in hepatic Sulf2 mRNA and a 2.2-fold increase in sulfatase 2 (SULF2) protein expression compared with WT mice on standard chow diet (SC). We showed that knockout of SULF2 ameliorates FFD-induced obesity, hyperlipidemia, steatohepatitis, and fibrosis. These data, along with work from other laboratories, suggest that SULF2 may be critical to the ability of the liver to progress to nonalcoholic steatohepatitis and fibrosis in conditions of overnutrition.

12.
Bioconjug Chem ; 31(6): 1661-1670, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32393025

RESUMO

Due to the specific tumor microenvironment (TME) and immunosuppressive state of cancer cells, conventional antitumor therapies face severe challenges, such as high rates of recurrence and metastasis. Herein, Cu-PPT nanoparticles were synthesized based on copper acetate, p-phenylenediamine, and 5,10,15,20-tetra-(4-aminophenyl)porphyrin via oxidative coupling reaction for the first time, and the resultant product was used for synergistic photothermal therapy (PTT), photodynamic therapy (PDT), and chemodynamic therapy (CDT). The polymer nanoparticles exhibited excellent photodynamic and photothermal effect with a photothermal conversion efficacy of 40.1% under 650 and 808 nm laser irradiation, respectively. Encapsulated Cu(I)/Cu(II) ions permitted Cu-PPT with glutathione (GSH) peroxidase-mimicking, catalase-mimicking, and Fenton-like activity to regulate TME. Depletion of overexpressed GSH would reduce antioxidant capacity, generated O2 could relieve hypoxia for enhancing PDT, and hyperthermia from PTT could promote the yield of ·OH. This multifunctional nanosystem with cascade reactions could inhibit tumor growth and activate immune responses effectively. By further combining with antiprogrammed death-ligand 1 (anti-PD-L1) checkpoint blockade therapy, distant tumor growth and cancer metastasis were successfully suppressed.

13.
Hum Mutat ; 41(8): e1-e6, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32442341

RESUMO

Multigene panel testing for cancer predisposition mutations is becoming routine in clinical care. However, the gene content of panels offered by testing laboratories vary significantly, and data on mutation detection rates by gene and by the panel is limited, causing confusion among clinicians on which test to order. Using results from 147,994 multigene panel tests conducted at Ambry Genetics, we built an interactive prevalence tool to explore how differences in ethnicity, age of onset, and personal and family history of different cancers affect the prevalence of pathogenic mutations in 31 cancer predisposition genes, across various clinically available hereditary cancer gene panels. Over 13,000 mutation carriers were identified in this high-risk population. Most were non-Hispanic white (74%, n = 109,537), but also Black (n = 10,875), Ashkenazi Jewish (n = 10,464), Hispanic (n = 10,028), and Asian (n = 7,090). The most prevalent cancer types were breast (50%), ovarian (6.6%), and colorectal (4.7%), which is expected based on genetic testing guidelines and clinician referral for testing. The Hereditary Cancer Multi-Gene Panel Prevalence Tool presented here can be used to provide insight into the prevalence of mutations on a per-gene and per-multigene panel basis, while conditioning on multiple custom phenotypic variables to include race and cancer type.

14.
J Natl Cancer Inst ; 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427313

RESUMO

BACKGROUND: The risks of breast cancer in African American (AA) women associated with inherited mutations in breast cancer predisposition genes are not well defined. Thus, whether multigene germline hereditary cancer testing panels are applicable to this population is unknown. We assessed associations between mutations in panel-based genes and breast cancer risk in 5054 AA women with breast cancer and 4993 unaffected AA women drawn from 10 epidemiologic studies. METHODS: Germline DNA samples were sequenced for mutations in 23 cancer predisposition genes using a QIAseq multiplex amplicon panel. Prevalence of mutations and odds ratios (ORs) for associations with breast cancer risk were estimated with adjustment for study design, age, and family history of breast cancer. RESULTS: Pathogenic mutations were identified in 10.3% of women with estrogen receptor (ER)-negative breast cancer, 5.2% of women with ER-positive breast cancer, and 2.3% of unaffected women. Mutations in BRCA1, BRCA2, and PALB2 were associated with high risks of breast cancer (OR = 47.55, 95% confidence interval [CI] = 10.43 to >100; OR = 7.25, 95% CI = 4.07 to 14.12; OR = 8.54, 95% CI = 3.67 to 24.95, respectively). RAD51D mutations were associated with high risk of ER-negative disease (OR = 7.82, 95% CI = 1.61 to 57.42). Moderate risks were observed for CHEK2, ATM, ERCC3, and FANCC mutations with ER-positive cancer, and RECQL mutations with all breast cancer. CONCLUSIONS: The study identifies genes that predispose to breast cancer in the AA population, demonstrates the validity of current breast cancer testing panels for use in AA women, and provides a basis for increased referral of AA patients for cancer genetic testing.

15.
J Mater Chem B ; 8(25): 5451-5459, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32459249

RESUMO

As traditional cancer treatment methods, photodynamic therapy (PDT) and photothermal therapy (PTT) can eliminate primary tumors, but they cannot inhibit extensive tumor metastasis and local recurrence. Herein, in order to prevent intermolecular accumulation and improve photostability, indocyanine green (ICG) is spontaneously adsorbed onto a covalent organic framework (COF) with high affinity through π-π conjugation, and then chicken ovalbumin (OVA) is coated on the surface of COF@ICG via an electrostatic interaction force. The resultant COF@ICG@OVA can ablate primary tumors under 650 nm and 808 nm laser irradiation due to its high photothermal conversion efficiency (η = 35.75%) and ability to produce reactive oxygen species (ROS). Tumor-associated antigens are also produced after combinational PTT/PDT therapy. By further combining with anti-PD-L1 checkpoint blockade therapy, it can effectively eliminate primary tumors and inhibit the metastasis of cancer cells by generating strong immune responses. Taken together, COF@ICG@OVA nanoparticles offer an efficient synergistic therapeutic modality for the treatment of tumor metastasis.

16.
J Clin Oncol ; 38(13): 1409-1418, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125938

RESUMO

PURPOSE: To determine the sensitivity and specificity of genetic testing criteria for the detection of germline pathogenic variants in women with breast cancer. MATERIALS AND METHODS: Women with breast cancer enrolled in a breast cancer registry at a tertiary cancer center between 2000 and 2016 were evaluated for germline pathogenic variants in 9 breast cancer predisposition genes (ATM, BRCA1, BRCA2, CDH1, CHEK2, NF1, PALB2, PTEN, and TP53). The performance of the National Comprehensive Cancer Network (NCCN) hereditary cancer testing criteria was evaluated relative to testing of all women as recommended by the American Society of Breast Surgeons. RESULTS: Of 3,907 women, 1,872 (47.9%) meeting NCCN criteria were more likely to carry a pathogenic variant in 9 predisposition genes compared with women not meeting criteria (9.0% v 3.5%; P < .001). Of those not meeting criteria (n = 2,035), 14 (0.7%) had pathogenic variants in BRCA1 or BRCA2. The sensitivity of NCCN criteria was 70% for 9 predisposition genes and 87% for BRCA1 and BRCA2, with a specificity of 53%. Expansion of the NCCN criteria to include all women diagnosed with breast cancer at ≤ 65 years of age achieved > 90% sensitivity for the 9 predisposition genes and > 98% sensitivity for BRCA1 and BRCA2. CONCLUSION: A substantial proportion of women with breast cancer carrying germline pathogenic variants in predisposition genes do not qualify for testing by NCCN criteria. Expansion of NCCN criteria to include all women diagnosed at ≤ 65 years of age improves the sensitivity of the selection criteria without requiring testing of all women with breast cancer.

17.
J Natl Cancer Inst ; 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32091585

RESUMO

BACKGROUND: The germline cancer predisposition genes associated with increased risk of each clinical subtype of breast cancer, defined by estrogen receptor (ER), progesterone receptor (PR), and HER2, are not well defined. METHODS: A total of 54,555 invasive breast cancer patients with 56,480 breast tumors were subjected to clinical hereditary cancer multigene panel testing. Heterogeneity for predisposition genes across clinical breast cancer subtypes was assessed by comparing mutation frequencies by gene among tumor subtypes and by association studies between each tumor subtype and reference controls. RESULTS: Mutations in 15 cancer predisposition genes were detected in 8.6% of patients with ER+/HER2-; 8.9% with ER+/HER2+; 7.7% with ER-/HER2+; and 14.4% of ER-/PR-/HER2- tumors. BRCA1, BRCA2, BARD1 and PALB2 mutations were enriched in ER- and HER2- tumors, RAD51C and RAD51D mutations were enriched in ER- tumors only, TP53 mutations were enriched in HER2+ tumors, and ATM and CHEK2 mutations were enriched in both ER+ and/or HER2+ tumors. All genes were associated with moderate (odds ratio (OR)>2.00) or strong (OR > 5.00) risks of at least one subtype of breast cancer in case-control analyses. Mutations in ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C, RAD51D, and TP53 had predicted lifetime absolute risks of ≥ 20.0% for breast cancer. CONCLUSIONS: Germline mutations in hereditary cancer panel genes confer subtype-specific risks of breast cancer. Combined tumor subtype, age at breast cancer diagnosis, and family history of breast and/or ovarian cancer information provides refined categorical estimates of mutation prevalence for women considering genetic testing.

18.
Int Immunopharmacol ; 80: 106219, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31991373

RESUMO

Fibroblast Growth Factor 21 (FGF21) has been reported to reduce inflammation and apoptosis. Inflammation and apoptosis are both the essential mechanisms during development of acute lung injury. This study evaluated whether pre-treatment of FGF21 could alleviate acute lung injury. Mice were pre-treated with FGF21 prior to lipopolysaccharide (LPS) treatment. 24 h later, the lung tissues and BALF were obtained to detect H&E pathology, W/D ratio, pro-inflammatory factors (TNF-α, IL-1ß and IL-6) and apoptosis. In vitro, Human BEAS-2B and THP-1 cells were overexpressed with TLR4 or MYD88 or NF-κB plasmid to detect the inflammation or apoptosis. Data showed that FGF21 was proved to be beneficial for inhibiting inflammation and apoptosis in the LPS- induced Balb/c mice or LPS induced BEAS-2B or THP-1 cells. Furthermore, the data showed that FGF21 suppressed inflammation and apoptosis via inhibition of TLR4/MYD88/NF-κB signaling pathway. Therefore, FGF21 provides a possibility for the treatment of LPS induced acute lung injury.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/farmacologia , Pulmão/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Lesão Pulmonar Aguda/diagnóstico , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Apoptose/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/uso terapêutico , Humanos , Lipopolissacarídeos/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Transdução de Sinais/imunologia , Células THP-1 , Receptor 4 Toll-Like/metabolismo
19.
Genet Med ; 22(2): 407-415, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31406321

RESUMO

PURPOSE: Despite the rapid uptake of multigene panel testing (MGPT) for hereditary cancer predisposition, there is limited guidance surrounding indications for testing and genes to include. METHODS: To inform the clinical approach to hereditary cancer MGPT, we comprehensively evaluated 32 cancer predisposition genes by assessing phenotype-specific pathogenic variant (PV) frequencies, cancer risk associations, and performance of genetic testing criteria in a cohort of 165,000 patients referred for MGPT. RESULTS: We identified extensive genetic heterogeneity surrounding predisposition to cancer types commonly referred for germline testing (breast, ovarian, colorectal, uterine/endometrial, pancreatic, and melanoma). PV frequencies were highest among patients with ovarian cancer (13.8%) and lowest among patients with melanoma (8.1%). Fewer than half of PVs identified in patients meeting testing criteria for only BRCA1/2 or only Lynch syndrome occurred in the respective genes (33.1% and 46.2%). In addition, 5.8% of patients with PVs in BRCA1/2 and 26.9% of patients with PVs in Lynch syndrome genes did not meet respective testing criteria. CONCLUSION: Opportunities to improve upon identification of patients at risk for hereditary cancer predisposition include revising BRCA1/2 and Lynch syndrome testing criteria to include additional clinically actionable genes with overlapping phenotypes and relaxing testing criteria for associated cancers.

20.
Genet Med ; 22(3): 622-632, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31636395

RESUMO

PURPOSE: Inherited pathogenic variants in PALB2 are associated with increased risk of breast and pancreatic cancer. However, the functional and clinical relevance of many missense variants of uncertain significance (VUS) identified through clinical genetic testing is unclear. The ability of patient-derived germline missense VUS to disrupt PALB2 function was assessed to identify variants with potential clinical relevance. METHODS: The influence of 84 VUS on PALB2 function was evaluated using a cellular homology directed DNA repair (HDR) assay and VUS impacting activity were further characterized using secondary functional assays. RESULTS: Four (~5%) variants (p.L24S,c.71T>C; p.L35P,c.104T>C; pI944N,c.2831T>A; and p.L1070P,c.3209T>C) disrupted PALB2-mediated HDR activity. These variants conferred sensitivity to cisplatin and a poly(ADP-ribose) polymerase (PARP) inhibitor and reduced RAD51 foci formation in response to DNA damage. The p.L24S and p.L35P variants disrupted BRCA1-PALB2 protein complexes, p.I944N was associated with protein instability, and both p.I944N and p.L1070P mislocalized PALB2 to the cytoplasm. CONCLUSION: These findings show that the HDR assay is an effective method for screening the influence of inherited variants on PALB2 function, that four missense variants impact PALB2 function and may influence cancer risk and response to therapy, and suggest that few inherited PALB2 missense variants disrupt PALB2 function in DNA repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA