Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
1.
Biomed Res Int ; 2021: 6631533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816622

RESUMO

Endometrial cancer (EC) is a common gynecological malignancy worldwide whose therapy mainly depends on chemotherapy. In past years, an increasing number of studies indicate that hollow MnO2 could serve as a nanoplatform in the drug delivery system. The Brucea javanica oil emulsion (BJOE) has been illustrated to play a vital role in cancers. However, knowledge about the combined effect of H-MnO2-PEG/BJOE in endometrial cancer remains ambiguous up to now. In the present work, we prepared a drug-delivery vector H-MnO2-PEG by chemical synthesis and found that H-MnO2-PEG significantly inhibited cell proliferation in endometrial cancer cells. Moreover, the combination of H-MnO2-PEG/BJOE could repress cell proliferation more efficiently and promote cell apoptosis. Mechanistically, we found that BJOE exerted its role as a promoter of endometrial apoptosis by regulating relative protein expressions. In general, the present study demonstrates that H-MnO2-PEG functions as a critical vector in the tumor microenvironment of endometrial cancer and the significant effect of H-MnO2-PEG/BJOE on cancer cells, suggesting a new paradigm for the treatment of endometrial cancer.

2.
J Food Prot ; 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33793776

RESUMO

Recently, ready-to-eat vegetable salads have gained popularity worldwide. However, the microbial safety of ready-to-eat salads is a health concern, primarily due to Salmonella enteritidis contamination during the growing, harvesting, processing, and handling of produce. This study aimed to develop a bacteriophage-based strategy to control S. enteritidis growth in mixed-ingredient salads. A lytic Salmonella-specific phage SapYZU01 was isolated from a soil sample from a suburban vegetable field in Yangzhou, China. SapYZU01 exhibited characteristics such as a short latent period, a large burst size, and a lytic effect against 13 S. enteritidis strains isolated from various sources (human, pork, deli, chicken, and chicken meat). The SapYZU01 genome did not contain virulence or antibiotic resistance genes. SapYZU01 significantly decreased the viability of S. enteritidis cells in iceberg lettuce, chicken meat, and mixed-ingredient (lettuce+chicken) salads at 37 and 25 °C. Furthermore, bacterial counts in the salad decreased significantly (by 4.0 log colony-forming units (CFU)/g) at 25 °C upon treatment of contaminated lettuce with SapYZU01 at an MOI of 100 prior to salad preparation. Bacterial counts were decreased by 3.8 log CFU/g at 25 °C in (lettuce+chicken) salads treated with SapYZU01 at an MOI of 100 after the salad preparation. In contrast, treating cooked chicken meat with SapYZU01 at an MOI of 100 before mixing it with contaminated lettuce decreased the bacterial count of the salad by 1.2 log CFU/g at 25 °C. These findings indicate the potential application of SapYZU01 as a natural biocontrol agent against S. enteritidis in mixed-ingredient salads. Furthermore, the application of lytic bacteriophage SapYZU01 in mix-ingredient salads should considered the bacteriophage treatment method in addition to the bacteriophage concentration.

3.
Carbohydr Polym ; 261: 117865, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766353

RESUMO

Nowadays, wood pulp addition (such as softwood, hardwood, etc.) into manufacture reconstructed tobacco sheet (RTS) via a paper-making process is a feasible and sustainable technology. However, the addition of wood pulp in RTS would weaken the tobacco fragrance of cigarette by bring wood gas when smoking. In this study, a practical and feasible pretreatment by hot water/cooking process combined with cationic modification/homogenization treatment was proposed to directly isolate desirable cellulose nanofibers from tobacco stem, named TCNF. The obtained TCNF was applied in the preparation of RTS to improve its physical properties but with a reduced wood pulp proportion (from 25 wt% decreased to 16 wt%). Results showed that TCNF exhibit a similar morphology with wood based nanocellulose, and that the addition of TCNF (0.5 wt% based dried tobacco pulp) can substitute 9 % of wood pulp compared with that of the control at the similar physical properties.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33768454

RESUMO

Temperature change between neighboring days (TCN) is an important trigger for cardiovascular diseases, but the modulated effects by seasonal temperature trends have been barely taken into account. A quantified comparison between impacts of positive TCNs (temperature rise) and negative situations (temperature drop) is also needed. We evaluated the associations of TCNs with emergency room (ER) visits for coronary heart disease (CHD) and cerebral infarction (CI) in Beijing, China, from 2008 to 2012. A year was divided into two segments dominated by opposite temperature trends, quasi-Poisson regression with distributed lag nonlinear models estimating TCN-morbidity relations were employed, separately for each period. High morbidities of CHD and CI both occurred in transitional seasons accompanied by large TCNs. Under warming backgrounds, positive TCNs increased CHD risk in patients younger than 65 years, and old people showed limited sensitivity. In the cooling periods, negative TCNs induced CHD risk in females and the elderly; the highest RR showed on lag 6 d. In particular, a same diurnal temperature decrease (e.g., - 2°C) induced greater RR (RR = 1.113, 95% CIs: 1.033-1.198) on old people during warming periods than cooling counterparts (RR = 1.055, 95% CIs: 1.011-1.100). Moreover, positive TCNs elevated CI risk regardless of background temperatures, and males were particularly vulnerable. Seasonal temperature trends modify TCN-cardiovascular morbidity associations significantly, which may provide new insights into the health impact of unstable weathers.

5.
New Phytol ; 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33665819

RESUMO

Global warming has reduced the productivity of many field-grown crops due to effects on male sterility. The genetic regulation of high temperature (HT) response in the major crop cotton is poorly understood. We determined the functionality and transcriptomes of anther of 218 cotton accessions grown under HT stress. By analyzing transcriptome divergence and implementing genome-wide association study (GWAS), we identified three thermal tolerance associated loci which contained 75 protein coding genes and 27 long non-coding RNAs, and provided expression quantitative trait loci (eQTLs) for 13,132 transcripts. A transcriptome-wide association study (TWAS) confirmed six causal elements for the HT response (three genes overlapped with GWAS results), involved in protein kinase activity. The most susceptible gene, GhHRK1 was confirmed as a previously uncharacterized negative regulator of the HT response both in cotton and in Arabidopsis. These functional variants provided new understanding of genetic basis for HT tolerance in male reproduction organs.

6.
Plant Sci ; 305: 110833, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33691967

RESUMO

Cotton is one of the most important economic crops and is cultivated globally. Verticillium wilt, caused by the soil-borne hemibiotrophic fungus Verticillium dahliae, is the most destructive disease in cotton production for its infection strategies and great genetic plasticity. Recent studies have identified the accumulation of lignin is a general and basal defense reaction in plant immunity and cotton resistance to V. dahliae. However, the functions and regulatory mechanisms of transcription factors in cotton defense-induced lignification and lignin composition alteration were less reported. Here, we identified a WRKY transcription factor GhWRKY1-like from upland cotton (Gossypium hirsutum) as a positive regulator in resistance to V. dahliae via directly manipulating lignin biosynthesis. Further analysis revealed that GhWRKY1-like interacts with the promoters of lignin biosynthesis related genes GhPAL6 and GhCOMT1, and activates the expression of GhPAL6 and GhCOMT1, which led to enhanced total lignin especially S monomers biosynthesis. These results demonstrate that GhWRKY1-like enhances Verticillium wilt resistance via an increase in defense-induced lignification and broaden our knowledge of the roles of lignification and the lignin composition in plant defense responses.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33684336

RESUMO

A high-efficiency spectrophotometric method based on nitrogen-doped fluorescent carbon dots (N-FCDs) was developed for the ultrasensitive determination of carmine (CRM) in foodstuffs. The N-FCDs were fabricated via a one-pot hydrothermal method with m-phenylenediamine as the starting material. The detection principle was based on the fluorescence quenching effect of N-FCDs by CRM, where their interaction was due to the inner filter effect (IFE) and static quenching. A good linear relationship was established for CRM detection in a concentration range of 0.1-10.0 µM with a detection limit as low as 11.2 nM. The proposed method achieved satisfactory results for CRM determination in commercial food products with recoveries better than 98.6% and relative standard deviations (RSDs) less than 4.07%. The method established in this study was simple, ultrasensitive and reliable for rapid detecting CRM in a food matrix, which could be potentially used as a useful sensing agent for the analysis of additive food colourants.

8.
Bioengineered ; 12(1): 815-820, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33645436

RESUMO

This study aimed to assess the effectiveness and safety of intravesical instillation treatment of Kangfuxin liquid (KFL) combined with thrombin and epidermal growth factor (EGF) for radiation-induced hemorrhagic cystitis (HC) in patients with cervical cancer. A total of 34 patients with radiation-induced HC of grade 2-4 were treated with intravesical instillation of KFL combined with thrombin and EGF until the complete disappearance of hematuria and lower urinary tract symptoms (LUTS). Gentamicin was added if white blood cells were detected and bacterial culture was positive in the urine. All patients were followed up for 2 years to evaluate the clinical efficacy and safety of the treatment regimen. Patients with and without recurrent hematuria (n = 3, 9% and n = 31, 91%, respectively) were completely recovered from hematuria and LUTS by intravesical instillation treatment for 6-22 days. No adverse event was reported during the treatment and the 2-year follow-up for all patients. Thus, intravesical instillation of KFL combined with thrombin and EGF is an effective and safe therapeutic regimen for radiation-induced HC of grade 2-4 in patients with cervical cancer.

9.
Proc Natl Acad Sci U S A ; 118(8)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602813

RESUMO

The assembly and jamming of magnetic nanoparticles (NPs) at liquid-liquid interfaces is a versatile platform to endow structured liquid droplets with a magnetization, i.e., producing ferromagnetic liquid droplets (FMLDs). Here, we use hydrodynamics experiments to probe how the magnetization of FMLDs and their response to external stimuli can be tuned by chemical, structural, and magnetic means. The remanent magnetization stems from magnetic NPs jammed at the liquid-liquid interface and dispersed NPs magneto-statically coupled to the interface. FMLDs form even at low concentrations of magnetic NPs when mixing nonmagnetic and magnetic NPs, since the underlying magnetic dipole-driven clustering of magnetic NP-surfactants at the interface produces local magnetic properties, similar to those found with pure magnetic NP solutions. While the net magnetization is smaller, such a clustering of NPs may enable structured liquids with heterogeneous surfaces.

10.
Plant Cell Rep ; 40(4): 735-751, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33638657

RESUMO

KEY MESSAGE: GhMYB4 acts as a negative regulator in lignin biosynthesis, which results in alteration of cell wall integrity and activation of cotton defense response. Verticillium wilt of cotton (Gossypium hirsutum) caused by the soil-borne fungus Verticillium dahliae (V. dahliae) represents one of the most important constraints of cotton production worldwide. Mining of the genes involved in disease resistance and illuminating the molecular mechanisms that underlie this resistance is of great importance in cotton breeding programs. Defense-induced lignification in plants is necessary for innate immunity, and there are reports of a correlation between increased lignification and disease resistance. In this study, we present an example in cotton whereby plants with reduced lignin content also exhibit enhanced disease resistance. We identified a negative regulator of lignin synthesis, in cotton encoded in GhMYB4. Overexpression of GhMYB4 in cotton and Arabidopsis enhanced resistance to V. dahliae  with reduced lignin deposition. Moreover, GhMYB4 could bind the promoters of several genes involved in lignin synthesis, such as GhC4H-1, GhC4H-2, Gh4CL-4, and GhCAD-3, and impair their expression. The reduction of lignin content in GhMYB4-overexpressing cotton led to alterations of cell wall integrity (CWI) and released more oligogalacturonides (OGs) which may act as damage-associated molecular patterns (DAMPs) to stimulate plant defense responses. In support of this hypothesis, exogenous application with polygalacturonic acid (PGA) in cotton activated biosynthesis of jasmonic acid (JA) and JA-mediated defense against V. dahliae, similar to that described for cotton plants overexpressing GhMYB4. This study provides a new candidate gene for cotton disease-resistant breeding and an increased understanding of the relationship between lignin synthesis, OG release, and plant immunity.

11.
Mater Sci Eng C Mater Biol Appl ; 120: 111672, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545837

RESUMO

The application of digitally manufactured dental metals has aroused the attention on their biocompatibilities. Three-dimensional oral mucosal model (3D OMM) would provide excellent assessments to the biocompatibility. In the current study, we set to measure metal ion release levels in the extracts of cast gold-platinum alloy (Au-Pt), differently manufactured cobalt-chromium alloy (Co-Cr) and commercially pure titanium (cp-Ti). We further tested two scaffold materials of 3D OMM to determine the better one for the succedent work. Lastly, we evaluated the apoptotic and autophagic effects of cast Au-Pt, and differently manufactured Co-Cr and cp-Ti on mucosal cells based on 3D OMM. We found that, in the construction of 3D OMM, Matrigel showed better performance than bovine acellular dermal matrix. Thus, Matrigel was chosen to construct the 3D OMM in the succedent studies. The results of ion release and biological assessments showed that, firstly, cast Au-Pt and cp-Ti triggered less early apoptotic cells and ion release than cast Co-Cr, implying better chemical stability and biocompatibility of them; secondly, digitally manufactured (including CAD/CAM milling and SLM) Co-Cr showed significantly lower ion release levels and lesser early apoptotic effects on 3D OMM as compared to the cast one. Although cast cp-Ti released much more ions than CAD/CAM milling one, manufacturing methods had no impact on apoptotic effect of cp-Ti. Therefore, we believe that digital methods possess same or even better chemical stability and biocompatibility than conventional casting one. Thirdly, although increased autophagic levels are observed in all test groups, so far there is no evidence that the test metals trigger different levels of autophagy as compared to each other. In addition, correlation analysis indicates that Co, W, and Mn appear to be the potential inducements for the apoptotic and autophagic effects of Co-Cr.

12.
Nature ; 591(7850): 413-419, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33618348

RESUMO

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119506, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33561684

RESUMO

Azithromycin (AZM)1 is one of the most widely used antibiotics. AZM abuse is easy to cause great harm to human body, so developing a rapid and sensitive method to detect AZM is of great importance. Herein, 3-aminothiophenol as only reaction precursor, nitrogen and sulfur co-doped carbon quantum dots (N,S-CQDs)2 were fabricated by one-step hydrothermal carbonization method. All characteristics demonstrate that N,S-CQDs possess good water solubility, high fluorescence stability and low cytotoxicity. Without being disturbed by amino acids and drugs, the most interesting finding is that AZM can efficiently quench the fluorescence of N,S-CQDs by a synergistic effect of electrostatic interaction and static quenching. A fluorescent probe for the detection of AZM was constructed with high selectivity and good sensitivity, achieving two linear ranges of 2.5-32.3 µM and 37.2-110 µM and a limit of detection of 0.76 µM. The proposed fluorescent method was used for the detection of AZM in cells with fulfilling results. More importantly, the fluorescent probe was successfully used to the detection of AZM in tablets and human urine with recovery rate and relative standard deviations of 98.2-104.8% and 0.04-3.46%, respectively, which was confirmed by the standard method of HPLC-UV. This finding illustrates the usefulness and feasibility of N,S-CQDs as an effective fluorescent probe for the detection of AZM in tablets and human urine, which is helpful for supervising and guiding pharmacy.

15.
Mikrochim Acta ; 188(3): 84, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33587161

RESUMO

A lanthanide-free fluorescent probe has been constructed for the first time based on two-dimensional metal-organic frameworks (2D MOFs) and carbon dots (CDs) for ratiometric determination of dipicolinic acid (DPA), the biomarker of Bacillus anthracis. The fluorescence intensity at 659 nm increased due to the release of organic ligands TCPP resulting from the selective interaction between DPA and Zn2+ of 2D MOFs. CDs provided a reference signal at 445 nm which was almost unaffected, realizing self-calibration DPA sensing. F659/F445 versus the concentration of DPA shows good linear relationships in the range 0.01-0.2 µM and 0.2-10 µM under 390-nm excitation, with a detection limit of 7 nM. The ratiometric probe was prepared from 2D lanthanide-free MOFs so that the drawbacks of lanthanide-based probes were overcome. The proposed sensing system was successfully applied to the determination of DPA in spiked biological samples. These results suggest that a novel, simple, and selective strategy of determining DPA with 2D lanthanide-free MOFs is implemented. Graphical abstract Zn-TCPP nanosheets and a blue carbon dots (b-CDs) are synthesized to construct the ratiometric probe, which can exhibit fluorescence at 445and 659 nm with 390-nm excitation. Dipicolinic acid (DPA) can deprive the junction ions of Zn-TCPP nanosheets, triggering the collapse ofZn-TCPP nanosheets. The fluorescence at 659 nm is enhanced due to the release of TCPP, while the peak of b-CDs at 445 nm is almost not affected. Thus, the fluorescence intensity ratio (F659/F445) can serve as the response signal for sensitive DPA sensing.

16.
Microb Pathog ; 152: 104767, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33524565

RESUMO

Enterobacter hormaechei is a foodborne pathogen responsible for neonatal sepsis in humans and respiratory disease in animals. In this work, a new virulent phage (P.A-5) infecting E. hormaechei was isolated from domestic sewage samples and characterized. Transmission electron microscopy revealed that P.A-5 belonged to the family Myoviridae having a head size of 77.53 nm and a tail length of 72.24 nm. The burst size was 262 PFU/cell after a latent period of 20 min. Phage P.A-5 was able to survive in a pH range of 4-9 and resist temperatures up to 55 °C for 60 min. The genome sequence of P.A-5 had homology most similar to that of Shigellae phage MK-13 (GenBank: MK509462.1). Pork artificially contaminated with E. hormaechei was used as a model to evaluate the potential of P.A-5. The results clearly showed that P.A-5 treatment can completely inhibit E. hormaechei growth in pork within 8 h, indicating the potential use of P.A-5 as a biocontrol agent for E. hormaechei.

17.
Adv Mater ; 33(7): e2006435, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33393159

RESUMO

Understanding the fundamental properties of buried interfaces in perovskite photovoltaics is of paramount importance to the enhancement of device efficiency and stability. Nevertheless, accessing buried interfaces poses a sizeable challenge because of their non-exposed feature. Herein, the mystery of the buried interface in full device stacks is deciphered by combining advanced in situ spectroscopy techniques with a facile lift-off strategy. By establishing the microstructure-property relations, the basic losses at the contact interfaces are systematically presented, and it is found that the buried interface losses induced by both the sub-microscale extended imperfections and lead-halide inhomogeneities are major roadblocks toward improvement of device performance. The losses can be considerably mitigated by the use of a passivation-molecule-assisted microstructural reconstruction, which unlocks the full potential for improving device performance. The findings open a new avenue to understanding performance losses and thus the design of new passivation strategies to remove imperfections at the top surfaces and buried interfaces of perovskite photovoltaics, resulting in substantial enhancement in device performance.

18.
PLoS One ; 16(1): e0245207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33411807

RESUMO

In the present study, we evaluated adjuvant potential of Poria cocos polysaccharide (PCP) on the Th1-type immune responses of C57/BL6 mice against ovalbumin (OVA). We first determined the effect of PCP on maturation of murine bone marrow derived dendritic cells (BMDCs), PCP significantly upregulated surface expression of MHCII, CD40, CD80, CD86 and enhanced production of IL-6 and IL-12p40. In addition, PCP affected receptor-mediated endocytosis, but not pinocytosis in BMDCs. Furthermore, OVA + PCP immunization induced specific cytotoxic CD8+ T cell killing of OVA (257-264) peptide pulsed cell. When mice were immunized subcutaneously in a week interval with OVA + PCP. Serum were collected for measuring OVA-specific antibody and splenocytes were harvested for analyzing CD69, IFN-γ ELISpot and cytokines production. The result indicated that OVA-specific IgG, IgG2a and IgG1 antibody levels in serum were significantly elevated by PCP compared with control. PCP increased OVA-specific IFN-γ-secreting CD8+, CD4+ T cells, promoted CD8+ T cell proliferation and up-regulated Th-1 type (IFN-γ, IL-2) cytokine production. In conclusion, data suggest that PCP enhanced cellular immune response and possess potential as a vaccine adjuvant for Th1 immune response.

19.
Angew Chem Int Ed Engl ; 60(16): 8694-8699, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33491263

RESUMO

With the interfacial jamming of nanoparticles (NPs), a load-bearing network of NPs forms as the areal density of NPs increases, converting the assembly from a liquid-like into a solid-like assembly. Unlike vitrification, the lineal packing of the NPs in the network is denser, while the remaining NPs can remain in a liquid-like state. It is a challenge to determine the point at which the assemblies jam, since both jamming and vitrification lead to a solid-like behavior of the assemblies. Herein, we show a real-time fluorescence imaging method to probe the evolution of the interfacial dynamics of NP surfactants at the water/oil interface using aggregation-induced emission (AIE) as a reporter for the transition of the assemblies into the jammed state. The AIEgens show typical fluorescence behavior at densities at which they can move and rotate. However, when aggregation of these fluorophores occurs, the smaller intermolecular separation distance arrests rotation, and a significant enhancement in the fluorescence intensity occurs.

20.
Mikrochim Acta ; 188(1): 16, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33399925

RESUMO

Nitrogen, sulfur, phosphorus, and chlorine co-doped carbon nanodots (NSPCl-CNDs) were fabricated by acid-base neutralization and exothermic carbonization of glucose. The obtained NSPCl-CNDs possess excellent fluorescence properties and good biocompatibility. Curcumin (Cur) can dramatically quench the fluorescence of NSPCl-CNDs based on a synergistic effect of electrostatic interaction, inner filter effect, and static quenching, so a "turn-off" fluorescent probe for Cur detection was constructed with linear ranges of 0.24-13.16 µM and 13.62-57.79 µM. The LOD and LOQ of this fluorescent probe for Cur are 8.71 nM and 29.03 nM, respectively. More importantly, the fluorescence of the NSPCl-CNDs-Cur system can be recovered by europium ion (Eu3+), so a "turn-on" fluorescent probe for Eu3+ determination was established. The linear range, LOD, and LOQ for the detection of Eu3+ were 2.36-32.91 µΜ, 73.29 nM, and 244.30 nM, respectively. The proposed fluorescence methods were successfully utilized for Cur and Eu3+ determination in real samples with recoveries in the range 95.64-104.13% and 97.06-98.70%, respectively. Furthermore, the qualitative analysis of Cur can be realized by reagent strips with satisfying results. Finally, the as-constructed "off-on" fluorescent probe was successfully used to sequentially analyze Cur and Eu3+ at the cellular level. This method is simple and easy to implement, manifesting that NSPCl-CNDs have potential application value in fluorescent probing, food and drug testing, environmental monitoring, and cellular labeling. Graphical abstract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...