Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(11): 13883-13890, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35274527

RESUMO

The half-metallic manganite oxide La2/3Sr1/3MnO3 (LSMO) has a very high spin polarization of ∼100%, making it ideal for ferromagnetic electrodes to realize tunneling magnetoresistance (TMR). Because of the in-plane magnetic anisotropy of the ferromagnetic LSMO electrode, which leads to the density limit of memory, realizing perpendicular tunneling in manganite-based magnetic tunnel junctions (MTJ) is critical for future applications. Here, we design and fabricate manganite-based MTJs composed of alternately stacked cobaltite and manganite layers that demonstrate strong perpendicular magnetic anisotropy (PMA) induced by interfacial coupling. Moreover, spin-dependent tunneling behaviors with an out-of-plane magnetic field were observed in the perpendicular MTJs. We found that the direct tunneling effect plays a dominant role in the low bias region during the transport behavior of devices, which is associated with thermionic emission of electrons or oxygen vacancies in the high bias region. Our works of realizing perpendicular tunneling in manganite-based MTJs lead to new approaches for designing and developing all-oxide spintronic devices.

2.
Adv Sci (Weinh) ; 8(24): e2102178, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34713629

RESUMO

Multiferroic materials with flexibility are expected to make great contributions to flexible electronic applications, such as sensors, memories, and wearable devices. In this work, super-flexible freestanding BiMnO3 membranes with simultaneous ferroelectricity and ferromagnetism are synthesized using water-soluble Sr3 Al2 O6 as the sacrificial buffer layer. The super-flexibility of BiMnO3 membranes is demonstrated by undergoing an ≈180° folding during an in situ bending test, which is consistent with the results of first-principles calculations. The piezoelectric signal under a bending radius of ≈500 µm confirms the stable existence of electric polarization in freestanding BiMnO3 membranes. Moreover, the stable ferromagnetism of freestanding BiMnO3 membranes is demonstrated after 100 times bending cycles with a bending radius of ≈2 mm. 5.1% uniaxial tensile strain is achieved in freestanding BiMnO3 membranes, and the piezoresponse force microscopy (PFM) phase retention behaviors confirm that the ferroelectricity of membranes can survive stably up to the strain of 1.7%. These super-flexible membranes with stable ferroelectricity and ferromagnetism pave ways to the realizations of multifunctional flexible electronics.

3.
Adv Mater ; 33(48): e2104623, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34590356

RESUMO

Protonated 3d transition-metal oxides often display low electronic conduction, which hampers their application in electric, magnetic, thermoelectric, and catalytic fields. Electronic conduction can be enhanced by co-inserting oxygen acceptors simultaneously. However, the currently used redox approaches hinder protons and oxygen ions co-insertion due to the selective switching issues. Here, a thermal hydration strategy for systematically exploring the synthesis of conductive protonated oxides from 3d transition-metal oxides is introduced. This strategy is illustrated by synthesizing a novel layered-oxide SrCoO3 H from the brownmillerite SrCoO2.5 . Compared to the insulating SrCoO2.5 , SrCoO3 H exhibits an unprecedented high electronic conductivity above room temperature, water uptake at 250 °C, and a thermoelectric power factor of up to 1.2 mW K-2 m-1 at 300 K. These findings open up opportunities for creating high-conductive protonated layered oxides by protons and oxygen ions co-doping.

4.
ACS Appl Mater Interfaces ; 13(34): 41315-41322, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410105

RESUMO

Integrating characteristics of materials through constructing artificial superlattices (SLs) has raised extensive attention in multifunctional materials. Here, we report the synthesis of BiFeO3/BiMnO3 SLs with considerable ferroelectric polarizations and tunable magnetic moments. The polarization of BiFeO3/BiMnO3 SLs presents a decent value of 12 µC/cm2, even as the dimensionality of BiFeO3 layers per period is reduced to about five-unit cells when keeping the BiMnO3 layers same. Moreover, it is found that the tunable magnetic moments of SLs are linked intimately to the dimensionality of BiFeO3 layers. Our simulations demonstrate that the superexchange interaction of Fe-O-Mn tends to be antiferromagnetic (AFM) with a lower magnetic domain formation energy rather than ferromagnetic (FM). Therefore, as the dimensionality of BiFeO3 per period is reduced, the AFM superexchange interaction between BiFeO3 and BiMnO3 in the SLs becomes weak, promoting a robust magnetization. This interlayer modulation effect in SLs presents an alluring way to accurately control the multiple order parameters in a multiferroic oxide system.

5.
Nano Lett ; 21(1): 144-150, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33306405

RESUMO

Materials with reduced dimensions have been shown to host a wide variety of exotic properties and novel quantum states that often defy textbook wisdom. Polarization switching and metallic screening are well-known examples of mutually exclusive properties that cannot coexist in bulk solids. Here we report the fabrication of (SrRuO3)1/(BaTiO3)10 superlattices that exhibits reversible polarization switching in an atomically thin metallic layer. A multipronged investigation combining structural analyses, electrical measurements, and first-principles electronic structure calculations unravels the coexistence of two-dimensional (2D) metallicity in the SrRuO3 layer accompanied by the breaking of inversion symmetry, supporting electric polarization along the out-of-plane direction. Such a 2D ferroelectric-like metal paves a novel way to engineer a quantum multistate with unusual coexisting properties, such as ferroelectrics and metals, manipulated by external fields.

6.
Nanoscale ; 12(17): 9810-9816, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32329477

RESUMO

Multiferroic materials with multifunctional characteristics play a critical role in the field of microelectronics. In a perovskite oxide, ferroelectric polarization and ferromagnetism usually cannot coexist in a single-phase material at the same time. In this work, we design a superlattice structure composed of alternating BiFeO3 and BiMnO3 layers and illustrate how tuning the supercell size of epitaxial BiFeO3/BiMnO3 superlattices facilitates ferroelectric polarization while maintaining relatively strong ferromagnetism. A comprehensive investigation reveals that the enhanced ferroelectric polarization of BiMnO3 layers originates from the induction effect induced by a strong polarization field generated by the adjacent ferroelectric BiFeO3 layers. For the magnetic behavior, we consider the existence of interfacial antiferromagnetic superexchange interaction of Fe-O-Mn between BiFeO3 and BiMnO3 layers in our superlattices. This modulation effect of artificial superlattices provides a platform to accurately control the multiple order parameters in a multiferroic oxide system.

7.
ACS Appl Mater Interfaces ; 10(36): 30803-30810, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30130085

RESUMO

The strain effect on charge transfer in correlated oxide La0.8Sr0.2MnO3/NdNiO3 (LSMO/NNO) heterostructures is investigated. This is achieved by carefully tailoring the strain on the two layers using various substrates. In contrast to bare LSMO films, the strain dependence of the enhanced magnetic moment of the LSMO/NNO bilayers strongly suggests that the charge transfer can be controlled via strain engineering in complex oxide heterostructures. Furthermore, our study also reveals that the coercive field, exchange bias, and conductivity are dramatically affected by the strain-modulated charge transfer in LSMO/NNO heterostructures. Our work thus points out a new path to control electronic states in oxide heterostructures to advance the use of interfaces in oxide-based electronics.

8.
ACS Appl Mater Interfaces ; 10(26): 22348-22355, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29882406

RESUMO

Magnetic materials with large magnetic anisotropy are essential for workaday applications such as permanent magnets and magnetic data storage. There is widespread interest in finding efficient ways of controlling magnetic anisotropy, among which strain control has proven to be a very powerful technique. Here, we demonstrate the strain-mediated magnetic anisotropy in SrCoO3-δ thin film, a perovskite oxide that is metallic and adopts a cubic structure at δ ≤ 0.25. We find that the easy-magnetization axis in SrCoO3-δ can be rotated by 90° upon application of moderate epitaxial strains ranging from -1.2 to +1.8%. The magnetic anisotropy in compressive SrCoO3-δ thin films is huge, as shown by magnetic hysteresis loops rendering an anisotropy energy density of ∼106 erg/cm3. The local variance in magnetic force microscopy upon temperature and magnetic field reveals that the evolution of magnetic domains in the SCO thin film is strongly dependent on magnetic anisotropy.

9.
ACS Nano ; 11(3): 2805-2813, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28225589

RESUMO

In this study, we report the effect of doping in morphotropic BiFeO3 (BFO) thin films on mechanical properties, revealing variations in the elasticity across the competing phases and their boundaries. Spectroscopic force-distance (F-D) curves and force mapping images by AFM are used to characterize the structure and elastic properties of three BFO thin-film candidates (pure-BFO, Ca-doped BFO, La-doped BFO). We show that softening behavior is observed in isovalent La-doped BFO, whereas hardening is seen in aliovalent Ca-doped BFO. Furthermore, quantitative F-D measurements are extended to show threshold strengths for phase transitions, revealing their dependence on doping in the system. First-principles simulation methods are also employed to understand the observed mechanical properties in pure and doped BFO thin films and to provide microscopic insight on them. These results provide key insight into doping as an effective control parameter to tune nanomechanical properties and suggest an alternative framework to control coupled ferroic functionalities at the nanoscale.

10.
Nat Commun ; 7: 12664, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27585637

RESUMO

Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature.

11.
Zhonghua Zheng Xing Wai Ke Za Zhi ; 20(4): 245-7, 2004 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-15568743

RESUMO

OBJECTIVE: To evaluate the advantages, disadvantages and their indications of total nasal reconstruction with different techniques. METHODS: A series of total nasal reconstruction were treated with four methods from 1975 to 2003. These methods were tubed flap of arm,midline forehead flap with skin graft, midline forehead flap with bilateral frontotemporal flaps for repairing the donor site, and expanded forehead flap. RESULTS: All of the patients were treated successfully. The shape and function of the reconstructed noses were satisfactory. However, the traditional forehead flap with skin graft may leave a unsightly big and black scar on the forehead. The technique of the tubed flap of arm could provide enough tissue without remaining forehead scar and be easily shaped, but it required long period, multiple procedures and body fixation for three weeks. CONCLUSIONS: Midline forehead flap with bilateral frontotemporal flaps for repairing the donor site may be good for small nose reconstruction while expanded forehead flap could reconstruct a big nose. Tubed flap of arm may be used to the patients who do not wish to leave any scar on the forehead. Forehead flap with skin graft to repair the donor sit- should generally be avoided for nose reconstruction.


Assuntos
Deformidades Adquiridas Nasais/cirurgia , Nariz/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nariz/transplante , Reprodutibilidade dos Testes , Estudos Retrospectivos , Transplante de Pele/métodos , Retalhos Cirúrgicos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA