RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Aspirin, as a first-line drug for the treatment of cardiovascular diseases, currently has high clinical usage. However, reports of aspirin-induced gastric mucosal injury are increasing. Xiaojianzhong decoction (XJZD), a classic traditional Chinese medicine formula, has been shown to alleviate gastric mucosal injury, although its potential mechanism of action requires further study. AIM OF THE STUDY: This study aimed to explore the effect and mechanism of XJZD in preventing aspirin-induced gastric mucosal injury. MATERIALS AND METHODS: Aspirin was used to induce damage in the morning, while XJZD was applied as an intervention in the afternoon. The compounds in the XJZD were analyzed by means of both high-performance liquid chromatography and ultra-performance liquid chromatography-tandem mass spectrometry. The overall condition of the aspirin-related gastric mucosal injury was evaluated. The expressions of inflammatory factors and tight-junction-related proteins and apoptosis were observed via immunohistochemistry and immunofluorescence. The expression levels of the apoptosis-related proteins were detected using Western blot. Transcriptomics was used to perform the integrative analysis of gastric tissues, which was then validated. Molecular dynamics was used to explore the interaction of key compounds within the XJZD with relevant targets. Finally, non-targeted metabolomics was used to observe any metabolic changes and construct a network between the differentially expressed genes and the differential metabolites to elucidate their potential relationship. RESULTS: XJZD can alleviate inflammation response, maintain the gastric mucosal barrier's integrity, reduce apoptosis and necroptosis levels, and promote the proliferation and repair of gastric mucosal tissues. Its mechanism of action may be related to the regulation of TNF-α signaling. Furthermore, molecular docking showed that the cinnamaldehyde within XJZD played an important role in its effects. In addition, XJZD can correct metabolic disorders, mainly regulating amino acid metabolism pathways. Moreover, six differential genes (Cyp1a2, Cyp1a1, Pla2g4c, etc.) were determined to alleviate both gastric mucosal injury and inflammation by regulating arachidonic acid metabolism, Tryptophan metabolism, etc. CONCLUSIONS: This study is the first to report that XJZD can inhibit necroptosis and gastric mucosal injury induced by aspirin, thereby revealing the complex mechanism of XJZD in relation to alleviating gastric mucosal injury from multiple levels and perspectives.
Assuntos
Medicamentos de Ervas Chinesas , Gastropatias , Humanos , Aspirina/toxicidade , Simulação de Acoplamento Molecular , Transcriptoma , Mucosa Gástrica , Inflamação/metabolismo , Gastropatias/metabolismo , Metabolômica , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/metabolismoRESUMO
This study investigated the effect of gamma irradiation on smoked bacon quality during storage and developed a multi-quality prediction model based on gamma irradiation. Gamma irradiation reduced moisture content and improved the microbial safety of smoked bacon. It also accelerated protein and lipid oxidation and altered free amino acids and fatty acids composition. It was effective in slowing down quality deterioration and sensory quality decline during storage. The backpropagation artificial neural network (BP-ANN) model was constructed by using physical and chemical indicators, irradiation dose, and storage time as input variables, and the total number of colonies and sensory scores as output layers. The transfer functions of the input-hidden layer and hidden-output layer were ReLu and Sigmoid, respectively. There were 13 neurons in the hidden layer. Results showed that BP-ANN based on physical and chemical indicators, irradiation dose, and storage time had great potential in predicting the multiple quality of smoked bacon.
Assuntos
Carne de Porco , Fumaça , Redes Neurais de ComputaçãoRESUMO
In the face of diversified analytes, it is a great challenge and infeasible task to design and synthesize corresponding macrocyclic hosts to realize the ideal supramolecular sensing. Herein, we proposed a novel supramolecular sensing strategy, guest adaptative assay (GAA), in which analyte was quantitatively transformed under mild conditions to perfectly adapt to macrocyclic host. As a health-threatening "landmine" in cereals, aflatoxins were converted by the aid of alkali hydrolysis to satisfactorily obtain aflatoxins transformants in ionic state, resulting in sensitive response by the guanidinocalix[5]areneâ¢fluorescein reporter pair. Surprisingly, the established strategy not only exhibited effective practicality in screening out high-risk cereals contaminated with aflatoxins, but also relieved the laborious task of macrocycle design and screening in supramolecular sensing.
Assuntos
Aflatoxinas , Aflatoxinas/análise , Grão Comestível/químicaRESUMO
Female insects oviposit in sites suitable for the development of their offspring. The Oriental armyworm, Mythimna separata is a serious pest of various crops including wheat and prefers to oviposit on withered leaves rather than on fresh plant material, which is surprisingly different from other insects. Studies here showed that this oviposition tactic enables avoidance of wheat defence against eggs and emerged larvae. Intact plants responded to M. separata egg deposition by releasing oviposition-induced plant volatiles including acetophenone, tetradecene and pentadecane after 24 h. Acetophenone was identified as quantitatively accounting for the attraction of the egg parasitoid wasp (Trichogramma chilonis). Leaf jasmonic acid levels significantly increased after M. separata laid eggs, and primed the plant against emerging larvae. In addition, newly emerged M. separata larvae adopted a fast crawling behaviour and starvation tolerance compared with other noctuid larvae, which enhanced the survival of larvae on the withered leaves. The elucidation of this complex and surprising plant-insect interaction provides the first explanation for a herbivore laying eggs on withered leaves to avoid natural enemies and live-plant defence against emerging larvae.
Assuntos
Mariposas , Vespas , Animais , Feminino , Oviposição , Larva , Insetos , Herbivoria , AcetofenonasRESUMO
The GATA family of genes plays various roles in crucial biological processes, such as development, cell differentiation, and disease progression. However, the roles of GATA in insects have not been thoroughly explored. In this study, a genome-wide characterization of the GATA gene family in the silkworm, Bombyx mori, was conducted, revealing lineage-specific expression profiles. Notably, GATA6 is ubiquitously expressed across various developmental stages and tissues, with predominant expression in the midgut, ovaries, and Malpighian tubules. Overexpression of GATA6 inhibits cell growth and promotes apoptosis, whereas, in contrast, knockdown of PARP mitigates the apoptotic effects driven by GATA6 overexpression. Co-immunoprecipitation (co-IP) has demonstrated that GATA6 can interact with Poly (ADP-ribose) polymerase (PARP), suggesting that GATA6 may induce cell apoptosis by activating the enzyme's activity. These findings reveal a dynamic and regulatory relationship between GATA6 and PARP, suggesting a potential role for GATA6 as a key regulator in apoptosis through its interaction with PARP. This research deepens the understanding of the diverse roles of the GATA family in insects, shedding light on new avenues for studies in sericulture and pest management.
RESUMO
BACKGROUND: Stroke and dementia are major neurological disorders that contribute significantly to disease burden and are interlinked in terms of risk. Nevertheless, there is currently no study investigating the influence of residential greenspace on the trajectory of these neurological disorders. METHODS: This longitudinal study utilized data from the UK Biobank. Exposure to residential greenspace was measured by the percentage of total greenspace coverage within a 300-meter buffer zone surrounding the participants' residences. A multistate model was employed to illustrate the trajectory of major neurological disorders, and a piecewise Cox regression model was applied to explore the impact of residential greenspace on different time courses of disease transitions. RESULTS: With 422,649 participants and a median follow-up period of 12.5â¯years, 8568 (2.0â¯%), 5648 (1.3â¯%), and 621 (0.1â¯%) individuals developed incident stroke, dementia, and comorbidity of both conditions, respectively. An increase in residential greenspace by one interquartile range was associated with reduced risks of transitions from baseline to stroke, dementia, and death, as well as from stroke to comorbidity. The corresponding hazard ratios (HRs) were 0.967 (95â¯% CI: 0.936, 0.998), 0.928 (0.892, 0.965), 0.925 (0.907, 0.942), and 0.799 (0.685, 0.933), respectively. Furthermore, the protective effect of residential greenspace on the transition from stroke or dementia to comorbidity was particularly pronounced within the first year and over 5â¯years after stroke and during the 2 to 3â¯years after dementia onset, with HRs of 0.692 (0.509, 0.941), 0.705 (0.542, 0.918), and 0.567 (0.339, 0.949), respectively. CONCLUSION: This study observed a protective role of residential greenspace in the trajectory of major neurological disorders, identifying critical progression windows. These findings underscore the significance of environment-health interactions in the prevention of neurological disorders.
RESUMO
BACKGROUND: Minimally invasive surgery (MIS) for spontaneous supratentorial intracerebral haemorrhage (ICH) is controversial but may be beneficial if end-of-treatment (EOT) haematoma volume is reduced to ≤15 mL. We explored whether MRI findings of cerebral small vessel disease (CSVD) modify the effect of MIS on long-term outcomes. METHODS: Prespecified blinded subgroup analysis of 288 subjects with qualified imaging sequences from the phase 3 Minimally Invasive Surgery Plus Alteplase for Intracerebral Haemorrhage Evacuation (MISTIE) trial. We tested for heterogeneity in the effects of MIS and MIS+EOT volume ≤15 mL on the trial's primary outcome of good versus poor function at 1 year by the presence of single CSVD features and CSVD scores using multivariable models. RESULTS: Of 499 patients enrolled in MISTIE III, 288 patients had MRI, 149 (51.7%) randomised to MIS and 139 (48.3%) to standard medical care (SMC). Median (IQR) ICH volume was 42 (30-53) mL. In the full MRI cohort, there was no statistically significant heterogeneity in the effects of MIS versus SMC on 1-year outcomes by any specific CSVD feature or by CSVD scores (all Pinteraction >0.05). In 94 MIS patients with EOT ICH volume ≤15 mL, significant reduction in odds of poor outcome was found with cerebral amyloid angiopathy score <2 (OR, 0.14 (0.05-0.42); Pinteraction=0.006), absence of lacunes (OR, 0.37 (0.18-0.80); Pinteraction=0.02) and absence of severe white matter hyperintensities (WMHs) (OR, 0.22 (0.08-0.58); Pinteraction=0.03). CONCLUSIONS: Following successful haematoma reduction by MIS, we found significantly lower odds of poor functional outcome with lower total burden of CSVD in addition to absence of lacunes and severe WMHs. CSVD features may have utility for prognostication and patient selection in clinical trials of MIS.
RESUMO
The influence of water-soluble selenium-containing proteins (WSSeP) in chicken on ulcerative colitis (UC) is not known. This work aims to investigate the effect of two WSSeP including h-Se with 1.78 µg Se/g and l-Se with 1.04 µg Se/g on mice UC induced by dextran sodium sulfate (DSS) versus 5-aminosalicylic acid (5-ASA). Seventy C57BL/6 mice were randomly divided into seven groups: groups 1 and 7 were given normal saline. Group 2 to group 4 were administrated orally 500, 1500, and 3000 mg/kg/day h-Se, respectively. Group 5 was given 1500 mg/kg/day l-Se as the control of group 3. From day 14 to day 21, groups 2 to 7 were fed with 3% DSS. Synchronously, group 6 was fed with 150 mg/kg/day 5-ASA. On day 21, the disease activity index, colon length, the histopathological changes, the expressions of claudin-1, occludin, ZO-1, TLR4, and MyD88 in colons, the levels of inflammatory cytokines (IFN-γ, IL-1ß, IL-6, TNF-α), and antioxidant markers (LPS, GSH-Px, SOD, MDA) in serum were determined. WSSeP can effectively improve the damages of DSS to the colon, thymus, and spleen, which present protein and Se dose-dependent. 1.50 g h-Se dose can significantly promote the expression levels of claudin-1, occludin, and ZO-1, to surround crypt gland and goblet and epithelial cells and inhibit the attack of DSS, suppress TLR4/MyD88 pathway, decrease the levels of IL-1ß, IL-6, TNF-α, IFN-γ, LPS, and MDA, and increase the activities of GSH-Px and SOD, which are better than those of 5-ASA. Therefore, WSSeP would be a natural and potential anti-inflammatory agent for UC.
RESUMO
The development of lithium-sulfur batteries is seriously hindered by the shuttle effect of lithium polysulfides (LiPSs) and the low electrical conductivity of sulfur. To solve these problems, efficient catalysts can be used to improve the conversion rate of LiPSs and the conductivity of sulfur cathode. Herein, annealed melamine foam supported MoSe2 (NCF@MoSe2 ) is used as interlayer and the MoSe2 /MoP heterojunction obtained by phosphating MoSe2 is further used as the catalyst material for metal fusion with a sulfur element. The interlayer can not only improve the electrical conductivity and effectively adsorb and catalyze LiPSs, but more importantly, the MoSe2 /MoP heterojunction can also effectively adsorb and catalyze LiPSs, so that the batteries have a dual inhibition shuttling effect strategy. Furthermore, the rapid anchor-diffusion transition of LiPSs, and the suppression of shuttling effects by catalyst materials are elucidated using theoretical calculations and in situ Raman spectroscopy. The two-step catalytic strategy exhibits a high reversibility of 983 mAh g-1 after 200 cycles at 0.5 C and a high-rate capacity of 889 mAh g-1 at 5 C. This work provides a feasible solution for the rational design of interlayer and heterojunction materials and is also conducive to the development of more advanced Li-S batteries.
RESUMO
Fibrosarcoma, originating from fibroblast cells, represents a malignant neoplasm that can manifest across all genders and age groups. Fusion genes are notably prevalent within the landscape of human cancers, particularly within the subtypes of fibrosarcoma, where they exert substantial driving forces in tumorigenesis. Many fusion genes underlie the pathogenic mechanisms triggering the onset of this disease. Moreover, a close association emerges between the spectrum of fusion gene types and the phenotypic expression of fibrosarcoma, endowing fusion genes not only as promising diagnostic indicators for fibrosarcoma but also as pivotal foundations for its subcategorization. Concurrently, an increasing number of chimeric proteins encoded by fusion genes have been substantiated as specific targets for treating fibrosarcoma, consequently significantly enhancing patient prognoses. This review comprehensively delineates the mechanisms behind fusion gene formation in fibrosarcoma, the lineage of fusion genes, methodologies employed in detecting fusion genes within fibrosarcoma, and the prospects of targeted therapeutic interventions driven by fusion genes within the fibrosarcoma domain.
RESUMO
The importance of metabolite modification and species-specific metabolic pathways has long been recognized. However, linking the chemical structure of metabolites to gene function in order to explore the genetic and biochemical basis of metabolism has not yet been reported in wheat (Triticum aestivum). Here, we profiled metabolic fragment enrichment in wheat leaves and consequently applied chemical-tag-based semi-annotated metabolomics in a genome-wide association study in accessions of wheat. The studies revealed that all 1,483 quantified metabolites have at least one known functional group whose modification is tailored in an enzyme-catalyzed manner and eventually allows efficient candidate gene mining. A Triticeae crop-specific flavonoid pathway and its underlying metabolic gene cluster were elucidated in further functional studies. Additionally, upon overexpressing the major effect gene of the cluster TraesCS2B01G460000 (TaOMT24), the pathway was reconstructed in rice (Oryza sativa), which lacks this pathway. The reported workflow represents an efficient and unbiased approach for gene mining using forward genetics in hexaploid wheat. The resultant candidate gene list contains vast molecular resources for decoding the genetic architecture of complex traits and identifying valuable breeding targets, and will ultimately aid in achieving wheat crop improvement.
RESUMO
African swine fever virus (ASFV) was first identified in 1921 and is extensively prevalent around the world nowadays, which has a significant negative impact on the swine industry. In China, genotype II ASFV was first discovered in 2018, and has spread quickly to different provinces in a very short time; genotype I ASFV was first found in 2020, and has been reported in several provinces since then. To establish an accurate method for detection and differentiation of genotypes I and II ASFV, three primers and probes were designed targeting the ASFV B646L gene for different genotypes, the F1055L gene for genotype I, and the E183L gene for genotype II, and a triplex real-time quantitative PCR (qPCR) for differential detection of genotypes I and II ASFV was developed after optimizing the reaction conditions. The assay showed high sensitivity, and the limits of detection (LOD) of the B646L, F1055L, and E183L genes were 399.647 copies/reaction, 374.409 copies/reaction, and 355.083 copies/reaction, respectively; the coefficients of variation (CVs) of the intra-assay and the inter-assay were 0.22-1.88% and 0.16-1.68%, respectively, showing that this method had good repeatability; the assay could detect only ASFV, without cross-reactivity with other swine viruses including PRRSV, PEDV, PDCoV, CSFV, PRV, and PCV2, showing excellent specificity of this method. A total of 3,519 clinical samples from Guangxi province, southern China, were tested by the developed assay, and 8.16% (287/3,519) samples were found to be positive for ASFV, of which 0.17% (6/3,519) samples were positive for genotype I, 7.19% (253/3,519) samples for genotype II, and 0.80% (28/3,519) samples for genotypes I and II. At the same time, these clinical samples were also tested by a previously reported multiplex qPCR, and the agreement between these two methods was more than 99.94%. In summary, the developed triplex qPCR provided a fast, specific and accurate method for detection and differentiation of genotypes I and II ASFV.
RESUMO
BACKGROUND: Cardiac pathological outcome of metabolic remodeling is difficult to model using cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) due to low metabolic maturation. METHODS: hiPSC-CM spheres were treated with AMP-activated protein kinase (AMPK) activators and examined for hiPSC-CM maturation features, molecular changes and the response to pathological stimuli. RESULTS: Treatment of hiPSC-CMs with AMPK activators increased ATP content, mitochondrial membrane potential and content, mitochondrial DNA, mitochondrial function and fatty acid uptake, indicating increased metabolic maturation. Conversely, the knockdown of AMPK inhibited mitochondrial maturation of hiPSC-CMs. In addition, AMPK activator-treated hiPSC-CMs had improved structural development and functional features-including enhanced Ca2+ transient kinetics and increased contraction. Transcriptomic, proteomic and metabolomic profiling identified differential levels of expression of genes, proteins and metabolites associated with a molecular signature of mature cardiomyocytes in AMPK activator-treated hiPSC-CMs. In response to pathological stimuli, AMPK activator-treated hiPSC-CMs had increased glycolysis, and other pathological outcomes compared to untreated cells. CONCLUSION: AMPK activator-treated cardiac spheres could serve as a valuable model to gain novel insights into cardiac diseases.
Assuntos
Proteínas Quinases Ativadas por AMP , Células-Tronco Pluripotentes Induzidas , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Células Cultivadas , Proteômica , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/fisiologiaRESUMO
OBJECTIVE: Prediabetes in young people is an emerging epidemic that disproportionately impacts Hispanic populations. We aimed to develop a metabolite-based prediction model for prediabetes in young people with overweight/obesity at risk for type 2 diabetes. RESEARCH DESIGN AND METHODS: In independent, prospective cohorts of Hispanic youth (discovery; n = 143 without baseline prediabetes) and predominately Hispanic young adults (validation; n = 56 without baseline prediabetes), we assessed prediabetes via 2-h oral glucose tolerance tests. Baseline metabolite levels were measured in plasma from a 2-h postglucose challenge. In the discovery cohort, least absolute shrinkage and selection operator regression with a stability selection procedure was used to identify robust predictive metabolites for prediabetes. Predictive performance was evaluated in the discovery and validation cohorts using logistic regression. RESULTS: Two metabolites (allylphenol sulfate and caprylic acid) were found to predict prediabetes beyond known risk factors, including sex, BMI, age, ethnicity, fasting/2-h glucose, total cholesterol, and triglycerides. In the discovery cohort, the area under the receiver operator characteristic curve (AUC) of the model with metabolites and known risk factors was 0.80 (95% CI 0.72-0.87), which was higher than the risk factor-only model (AUC 0.63 [0.53-0.73]; P = 0.001). When the predictive models developed in the discovery cohort were applied to the replication cohort, the model with metabolites and risk factors predicted prediabetes more accurately (AUC 0.70 [95% CI 40.55-0.86]) than the same model without metabolites (AUC 0.62 [0.46-0.79]). CONCLUSIONS: Metabolite profiles may help improve prediabetes prediction compared with traditional risk factors. Findings suggest that medium-chain fatty acids and phytochemicals are early indicators of prediabetes in high-risk youth.
RESUMO
INTRODUCTION: Electrocautery is used widely in surgical procedures, but making skin incision has routinely been performed with scalpel rather than electrocautery, for fear that electrocautery may cause poor incision healing, excessive scarring and increased wound complication rates. More and more studies on general surgery support the use of electrocautery for skin incision, but research comparing the two modalities for scalp incision in neurosurgery remains inadequate. This trial aims to evaluate the safety and efficacy of needle-tip monopolar for scalp incision in supratentorial neurosurgery compared with steel scalpel. METHODS AND ANALYSIS: In this prospective, randomised, double-blind trial, 120 eligible patients who are planned to undergo supratentorial neurosurgery will be enrolled. Patients will be randomly assigned to two groups. In controlled group scalp incision will be made with a scalpel from the epidermis to the galea aponeurotica, while in intervention group scalp will be first incised with a steel scalpel from the epidermis to the dermis, and then the subcutaneous tissue and galea aponeurotica will be incised with needle-tip monopolar on cutting mode. The primary outcomes are scar score (at 90 days). The secondary outcomes include incision pain (at 1 day, on discharge, at 90 days) and alopecia around the incision (at 90 days), incision blood loss and incision-related operation time (during operation), incision infection and incision healing (on discharge, at 2 weeks, 90 days). ETHICS AND DISSEMINATION: This trial will be performed according to the principles of Declaration of Helsinki and good clinical practice guidelines. This study has been validated by the ethics committee of West China Hospital. Informed consent will be obtained from each included patient and/or their designated representative. Final results from this trial will be promulgated through publications. TRIAL REGISTRATION NUMBER: ChiCTR2200063243.
Assuntos
Neurocirurgia , Ferida Cirúrgica , Humanos , Estudos Prospectivos , Eletrocoagulação/métodos , Procedimentos Neurocirúrgicos , Cicatriz , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
In recent years, genitourinary system tumors are common in people of all ages, seriously affecting the quality of life of patients, the pathogenesis and treatment of these diseases are constantly being updated and improved. Exosomes, with a lipid bilayer that enable delivery of their contents into body fluids or other cells. Exosomes can regulate the tumor microenvironment, and play an important role in tumor development. In turn, cellular and non-cellular components of tumor microenvironment also affect the occurrence, progression, invasion and metastasis of tumor. Non-coding RNAs have been shown to be able to be ingested and released by exosomes, and are seen as a potential tool in cancer diagnosis and treatment. Here, we summarize the effect of non-coding RNAs of exosome contents on the tumor microenvironment of genitourinary system tumor, expound the significance of non-coding RNAs of exosome in the occurrence, development, diagnosis and treatment of cancers.
Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Qualidade de Vida , Sistema Urogenital , RNA não Traduzido/genéticaRESUMO
BACKGROUND: Genomic DNA reference materials are widely recognized as essential for ensuring data quality in omics research. However, relying solely on reference datasets to evaluate the accuracy of variant calling results is incomplete, as they are limited to benchmark regions. Therefore, it is important to develop DNA reference materials that enable the assessment of variant detection performance across the entire genome. RESULTS: We established a DNA reference material suite from four immortalized cell lines derived from a family of parents and monozygotic twins. Comprehensive reference datasets of 4.2 million small variants and 15,000 structural variants were integrated and certified for evaluating the reliability of germline variant calls inside the benchmark regions. Importantly, the genetic built-in-truth of the Quartet family design enables estimation of the precision of variant calls outside the benchmark regions. Using the Quartet reference materials along with study samples, batch effects are objectively monitored and alleviated by training a machine learning model with the Quartet reference datasets to remove potential artifact calls. Moreover, the matched RNA and protein reference materials and datasets from the Quartet project enables cross-omics validation of variant calls from multiomics data. CONCLUSIONS: The Quartet DNA reference materials and reference datasets provide a unique resource for objectively assessing the quality of germline variant calls throughout the whole-genome regions and improving the reliability of large-scale genomic profiling.
Assuntos
Benchmarking , Genoma Humano , Humanos , Reprodutibilidade dos Testes , Polimorfismo de Nucleotídeo Único , Células Germinativas , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
The limited ionic conductivity and unstable interface due to poor solid-solid interface pose significant challenges to the stable cycling of solid-state batteries (SSBs). Herein, an interfacial plasticization strategy is proposed by introducing a succinonitrile (SN)-based plastic curing agent into the polyacrylonitrile (PAN)-based composite polymer electrolytes (CPE) interface. The SN at the interface strongly plasticizes the PAN in the CPE, which reduces the crystallinity of the PAN drastically and enables the CPE to obtain a low modulus surface, but it still maintains a high modulus internally. The reduced crystallinity of PAN provides more amorphous regions, which are favorable for Li+ transport. The gradient modulus structure not only ensures intimate interfacial contact but also favors the suppression of Li dendrites growth. Consequently, the interfacial plasticized CPE (SF-CPE) obtains a high ionic conductivity of 4.8 × 10-4 S cm-1 as well as a high Li+ transference number of 0.61. The Li-Li symmetric cell with SF-CPE can cycle for 1000 h at 0.1 mA cm-2 , the LiFeO4 (LFP)-Li full-cell demonstrates a high capacity retention of 86.1% after 1000 cycles at 1 C, and the LiCoO2 (LCO)-Li system also exhibits an excellent cycling performance. This work provides a novel strategy for long-life solid-state batteries.