Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Math Biosci Eng ; 18(6): 8331-8353, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34814302

RESUMO

BACKGROUND: Metastasis-Associated in Colon Cancer 1(MACC1) is a validated biomarker for metastasis and is linked to survival. Although extensive experimental evidence indicates an association between MACC1 and diverse cancers, no pan-cancer analyses have yet been performed for this marker, and the role of MACC1 in immunology remains unknown. MATERIAL AND METHODS: In our study, we performed the analysis of MACC1 expression and its influence on prognosis using multiple databases, including TIMER2, GEPIA2, Kaplan-Meier plotter. MACC1 promoter methylation levels were evaluated using the UALCAN database. Based on the TCGA database, we explored the relationship between MACC1 and tumor mutational burden (TMB), microsatellite instability (MSI), immune checkpoints using the R programming language. We evaluated the association between MACC1 and immune infiltration via TIMER and UALCAN. RESULTS: Our results revealed that abnormal DNA methylation may be an important cause for the different expression of MACC1 across cancer types. Meanwhile, we explored the potential oncogenic roles of MACC1 and found significant prognostic value. MACC1 may be related to T-cell function and the polarization of tumor-associated macrophages, especially in STAD and LGG. Its expression was associated with immune infiltration and was found to be closely related to immune checkpoint-associated genes, especially CD274 and SIGLEC15, indicating that MACC1 may be a potential immune therapeutic target for several malignancies. Our paper reveals for the first time the relationship between MACC1 and cancer immunology. CONCLUSIONS: MACC1 might act as a predictor for the immune response in cancer patients, and could also represent a new potential immunotherapeutic target.

2.
Medicine (Baltimore) ; 100(46): e27595, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797281

RESUMO

ABSTRACT: The main purpose of this study was to build a prediction model for patients with contralateral breast cancer (CBC) using competing risks methodology. The aim is to help clinicians predict the probability of CBC in breast cancer (BC) survivors.We reviewed data from the Surveillance, Epidemiology, and End Results database of 434,065 patients with BC. Eligible patients were used to quantify the association between the development of CBC and multiple characteristics of BC patients using competing risk models. A nomogram was also created to facilitate clinical visualization and analysis. Finally, the stability of the model was verified using concordance index and calibration plots, and decision curve analysis was used to evaluate the clinical utility of the model by calculating the net benefit.Four hundred thirty-four thousand sixty-five patients were identified, of whom 6944 (1.6%) developed CBC in the 10 years follow-up. The 10-year cumulative risk of developing CBC was 2.69%. According to a multivariate competing risk model, older patients with invasive lobular carcinoma who had undergone unilateral BC surgery, and whose tumor was better differentiated, of smaller size and ER-negative/PR-positive, had a higher risk of CBC. The calibration plots illustrated an acceptable correlation between the prediction by nomogram and actual observation, as the calibration curve was closed to the 45° diagonal line. The concordance index for the nomogram was 0.65, which indicated it was well calibrated for individual risk of CBC. Decision curve analysis produced a wide range of risk thresholds under which the model we built would yield a net benefit.BC survivors remain at high risk of developing CBC. Patients with CBC have a worse clinical prognosis compared to those with unilateral BC. We built a predictive model for the risk of developing CBC based on a large data cohort to help clinicians identify patients at high risk, which can then help them plan individualized surveillance and treatment.

3.
Cell Death Dis ; 12(12): 1086, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34789718

RESUMO

Transmembrane protein (TMEM) is a family of protein that spans cytoplasmic membranes and allows cell-cell and cell-environment communication. Dysregulation of TMEMs has been observed in multiple cancers. However, little is known about TMEM116 in cancer development. In this study, we demonstrate that TMEM116 is highly expressed in non-small-cell lung cancer (NSCLC) tissues and cell lines. Inactivation of TMEM116 reduced cell proliferation, migration and invasiveness of human cancer cells and suppressed A549 induced tumor metastasis in mouse lungs. In addition, TMEM116 deficiency inhibited PDK1-AKT-FOXO3A signaling pathway, resulting in accumulation of TAp63, while activation of PDK1 largely reversed the TMEM116 deficiency induced defects in cancer cell motility, migration and invasive. Together, these results demonstrate that TMEM116 is a critical integrator of oncogenic signaling in cancer metastasis.

4.
Cell Death Discov ; 7(1): 337, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34743181

RESUMO

Extracellular vesicles (EVs) have emerged as important vectors of intercellular dialogue. High mobility group box protein 1 (HMGB1) is a typical damage-associated molecular pattern (DAMP) molecule, which is cytotoxic and leads to cell death and tissue injury. Whether EVs are involved in the release of HMGB1 in lipopolysaccharide (LPS)-induced acute liver injuries need more investigation. EVs were identified by transmission electron microscopy, nanoparticle tracking analysis (NTA), and western blotting. The co-localization of HMGB1, RAGE (receptor for advanced glycation end-products), EEA1, Rab5, Rab7, Lamp1 and transferrin were detected by confocal microscopy. The interaction of HMGB1 and RAGE were investigated by co-immunoprecipitation. EVs were labeled with the PKH67 and used for uptake experiments. The pyroptotic cell death was determined by FLICA 660-YVAD-FMK. The expression of NLRP3 (NOD-like receptor family pyrin domain containing 3) inflammasomes were analyzed by western-blot or immunohistochemistry. Serum HMGB1, ALT (alanine aminotransferase), AST (aspartate aminotransferase), LDH (lactate dehydrogenase) and MPO (myeloperoxidase) were measured using a commercial kit. The extracellular vesicle HMGB1 was detected in the serums of sepsis patients. Macrophages were found to contribute to HMGB1 release through the EVs. HMGB1-RAGE interactions participated in the loading of HMGB1 into the EVs. These EVs shuttled HMGB1 to target cells by transferrin-mediated endocytosis leading to hepatocyte pyroptosis by the activation of NLRP3 inflammasomes. Moreover, a positive correlation was verified between the sepsis serum EVs-HMGB1 level and clinical liver damage. This finding provides insights for the development of novel diagnostic and therapeutic strategies for acute liver injuries.

5.
Cell Oncol (Dordr) ; 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797559

RESUMO

PURPOSE: Emerging evidence suggests that cytotoxic therapy may promote drug resistance and metastasis while inhibiting the growth of primary tumors. As yet, however, the underlying mechanisms remain unclear. Here, we aimed to investigate the pro-metastatic effects of adriamycin (ADR) therapy on breast cancer cells and to investigate the mechanisms underlying these effects. METHODS: Differentially expressed genes between MCF-7 and ADR-resistant MCF-7 breast cancer cells were identified using high-throughput RNA-seq and differential gene expression analyses. In vitro transwell and scratch wound-healing assays, and an in vivo spontaneous metastasis model were used to study the metastatic potential of the breast cancer cells. The relationship between SIRT7 and TEK expression was studied using promoter activity, electrophoretic mobility shift (EMSA), CHIP-qPCR and Co-IP assays. RESULTS: Using transcriptome sequencing, we identified two key genes (SIRT7 and TEK) that might contribute to the pro-metastatic effect of ADR on breast cancer cells. SIRT7 acted as a negative regulator for TEK by inducing deacetylation of H3K18 at the TEK promoter. Through transcription factor prediction and double fluorescence experiments, we found that EST-1 could bind to the TEK promoter. Knockdown of EST-1 removed the transcriptional inhibition of TEK that was mediated by up-regulation of SIRT7. Co-IP showed that SIRT7 interacts directly with EST-1 in breast cancer cells, indicating that SIRT7 may induce H3K18 deacetylation at the TEK promoter region by directly binding to EST-1. In vitro and in vivo results showed that overexpression of SIRT7 or inhibition of TIE2 significantly reduced ADR-dependent breast cancer cell invasion/metastasis. CONCLUSION: Our findings suggest that ADR therapy may accelerate breast cancer metastasis in a SIRT7/TEK(TIE2) dependent manner.

6.
EBioMedicine ; 73: 103643, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34689086

RESUMO

BACKGROUND: Wildtype mice are not susceptible to SARS-CoV-2 infection. Emerging SARS-CoV-2 variants, including B.1.1.7, B.1.351, P.1, and P.3, contain mutations in spike that has been suggested to associate with an increased recognition of mouse ACE2, raising the postulation that these SARS-CoV-2 variants may have evolved to expand species tropism to wildtype mouse and potentially other murines. Our study evaluated this possibility with substantial public health importance. METHODS: We investigated the capacity of wildtype (WT) SARS-CoV-2 and SARS-CoV-2 variants in infecting mice (Mus musculus) and rats (Rattus norvegicus) under in vitro and in vivo settings. Susceptibility to infection was evaluated with RT-qPCR, plaque assays, immunohistological stainings, and neutralization assays. FINDINGS: Our results reveal that B.1.1.7 and other N501Y-carrying variants but not WT SARS-CoV-2 can infect wildtype mice. High viral genome copies and high infectious virus particle titres are recovered from the nasal turbinate and lung of B.1.1.7-inocluated mice for 4-to-7 days post infection. In agreement with these observations, robust expression of viral nucleocapsid protein and histopathological changes are detected from the nasal turbinate and lung of B.1.1.7-inocluated mice but not that of the WT SARS-CoV-2-inoculated mice. Similarly, B.1.1.7 readily infects wildtype rats with production of infectious virus particles. INTERPRETATION: Our study provides direct evidence that the SARS-CoV-2 variant, B.1.1.7, as well as other N501Y-carrying variants including B.1.351 and P.3, has gained the capability to expand species tropism to murines and public health measures including stringent murine control should be implemented to facilitate the control of the ongoing pandemic. FUNDING: A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.

7.
Oxid Med Cell Longev ; 2021: 6621921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497682

RESUMO

Lung ischemia reperfusion (IR) is known to occur after lung transplantation or cardiac bypass. IR leads to tissue inflammation and damage and is also associated with increased morbidity and mortality. Various receptors are known to partake in activation of the innate immune system, but the downstream mechanism of tissue damage and inflammation is yet unknown. MicroRNAs (miRNAs) are in the forefront in regulating ischemia reperfusion injury and are involved in inflammatory response. Here, we have identified by high-throughput approach and evaluated a distinct set of miRNAs that may play a role in response to IR in rat lung tissue. The top three differentially expressed miRNAs were validated through quantitative PCRs in the IR rat lung model and an in vitro model of IR of hypoxia and reoxygenation exposed type II alveolar cells. Among the miRNAs, miR-18a-5p showed consistent downregulation in both the model systems on IR. Cellular and molecular analysis brought to light a crucial role of this miRNA in ischemia reperfusion. miR-18a-5p plays a role in IR-mediated apoptosis and ROS production and regulates the expression of neuropeptide Galanin. It also influences the nuclear localization of transcription factor: nuclear factor-erythroid 2-related factor (Nrf2) which in turn may regulate the expression of the miR-18a gene. Thus, we have not only established a rat model for lung IR and enumerated the important miRNAs involved in IR but have also extensively characterized the role of miR-18a-5p. This study will have important clinical and therapeutic implications for and during transplantation procedures.

8.
Int J Biol Macromol ; 189: 11-17, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34411611

RESUMO

Flammulina velutipes has anti-inflammatory, immunomodulatory, antioxidant and many bioactive properties with high contents of carbohydrate, proteins and fibers. In this study, a novel proteoglycan with polysaccharide complexes and protein chain, named PGD1-1, was isolated from F. velutipes. The structural characteristics of PGD1-1 were then determined, and its anti-proliferation and pro-apoptotic activities against HepG-2 cells were demonstrated in vitro. Results proved that the average molecular weight of PGD1-1 was 32.71 kDa, and the carbohydrate and protein contents were 93.35 and 2.33%, respectively. The protein moiety was bonded to a polysaccharide chain via O-glycosidic linkage. The monosaccharides consisted of d-glucose, D-galactose and D-xylose in a molar ratio of 21.90:2.84:1.00. PGD1-1 significantly inhibited the proliferation of HepG-2 cells by affecting cell lipid peroxidation and nitric oxide production. In addition, PGD1-1 promoted the apoptosis of HepG-2 cells, especially the early apoptosis. These findings proved that PGD1-1 was a novel potent ingredient against the proliferation of HepG-2, which will provide a theoretical basis for the development and utilization of the functional ingredients of the F. velutipes.

9.
Schizophr Bull ; 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34313787

RESUMO

OBJECTIVES: Patients with psychiatric disorders have an increased risk of cardiovascular pathologies. A bidirectional feedback model between the brain and heart exists widely in both psychotic and nonpsychotic disorders. The aim of this study was to compare heart rate variability (HRV) and pulse wave velocity (PWV) functions between patients with psychotic and nonpsychotic disorders and to investigate whether subgroups defined by HRV and PWV features improve the transdiagnostic psychopathology of psychiatric classification. METHODS: In total, 3448 consecutive patients who visited psychiatric or psychological health services with psychotic (N = 1839) and nonpsychotic disorders (N = 1609) and were drug-free for at least 2 weeks were selected. HRV and PWV indicators were measured via finger photoplethysmography during a 5-minute period of rest. Canonical variates were generated through HRV and PWV indicators by canonical correlation analysis (CCA). RESULTS: All HRV indicators but none of the PWV indicators were significantly reduced in the psychotic group relative to those in the nonpsychotic group. After adjusting for age, gender, and body mass index, many indices of HRV were significantly reduced in the psychotic group compared with those in the nonpsychotic group. CCA analysis revealed 2 subgroups defined by distinct and relatively homogeneous patterns along HRV and PWV dimensions and comprising 19.0% (subgroup 1, n = 655) and 80.9% (subgroup 2, n = 2781) of the sample, each with distinctive features of HRV and PWV functions. CONCLUSIONS: HRV functions are significantly impaired among psychiatric patients, especially in those with psychosis. Our results highlight important subgroups of psychiatric patients that have distinct features of HRV and PWV which transcend current diagnostic boundaries.

10.
Int J Biol Sci ; 17(9): 2157-2166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239346

RESUMO

Adult mammalian hearts show limited capacity to proliferate after injury, while zebrafish are capable to completely regenerate injured hearts through the proliferation of spared cardiomyocytes. BMP and Notch signaling pathways have been implicated in cardiomyocyte proliferation during zebrafish heart regeneration. However, the molecular mechanism underneath this process as well as the interaction between these two pathways remains to be further explored. In this study we showed BMP signaling was activated after ventricle ablation and acted epistatic downstream of Notch signaling. Inhibition of both signaling pathways differentially influenced ventricle regeneration and cardiomyocyte proliferation, as revealed by time-lapse analysis using a cardiomyocyte-specific FUCCI (fluorescent ubiquitylation-based cell cycle indicator) system. Further experiments revealed that inhibition of BMP and Notch signaling led to cell-cycle arrest at different phases. Overall, our results shed light on the interaction between BMP and Notch signaling pathways and their functions in cardiomyocyte proliferation during cardiac regeneration.

11.
Cancer Manag Res ; 13: 5223-5237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234565

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive, difficult-to-treat subtype of cancer with a poor prognosis; there is an urgent need for effective, targeted molecular therapies. The cyclin D/cyclin-dependent kinase (CDK)4/6-retinoblastoma protein (Rb) pathway plays a critical role in regulating cell cycle checkpoints, a process which is often disrupted in cancer cells. Selective CDK4/6 inhibitors can prevent retinoblastoma protein phosphorylation by invoking cell cycle arrest in the first growth phase (G1), and may therefore represent an effective treatment option. In this article, we review the molecular mechanisms and therapeutic efficacy of CDK4/6 inhibitors in combination with other targeted therapies for the treatment of triple-negative breast cancer. Three selective CDK4/6 inhibitors have so far received the approval of the Food and Drug Administration (FDA) for patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2) breast cancer. Trilaciclib, a small molecule short-acting inhibitor of CDK4/6, has also been approved recently for people with small cell lung cancer, and is also expected to be clinically effective against breast cancer. Although the efficacy of CDK4/6 inhibitors in patients with triple-negative breast cancer remains uncertain, their use in conjunction with other targeted therapies may improve outcomes and is therefore currently being explored. Identifying biomarkers for response or resistance to CDK4/6 inhibitor treatment may optimize the personalization of treatment strategies for this disease. Ongoing and future clinical trials and biomarker studies will shed further light on these topics, and help to realize the full potential of CDK4/6 inhibitor treatment in triple-negative breast cancer.

12.
Cell Death Dis ; 12(8): 743, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315861

RESUMO

Transcription factor IRF3 is critical for the induction of antiviral type I interferon (IFN-I). The epigenetic regulation of IFN-I production in antiviral innate immunity needs to be further identified. Here, we reported that epigenetic remodeler ARID1A, a critical component of the mSWI/SNF complex, could bind IRF3 and then was recruited to the Ifn-I promoter by IRF3, thus selectively promoting IFN-I but not TNF-α, IL-6 production in macrophages upon viral infection. Myeloid cell-specific deficiency of Arid1a rendered mice more susceptible to viral infection, accompanied with less IFN-I production. Mechanistically, ARID1A facilitates chromatin accessibility of IRF3 at the Ifn-I promoters by interacting with histone methyltransferase NSD2, which methylates H3K4 and H3K36 of the promoter regions. Our findings demonstrated the new roles of ARID1A and NSD2 in innate immunity, providing insight into the crosstalks of chromatin remodeling, histone modification, and transcription factors in the epigenetic regulation of antiviral innate immunity.

13.
J Immunol Res ; 2021: 5531220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34056008

RESUMO

The nucleocapsid protein (NP) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains immunogenic epitopes that can induce cytotoxic T lymphocyte (CTL) against viral infection. This makes the nucleocapsid protein a suitable candidate for developing a vaccine against SARS-CoV-2 infection. This article reports the intradermal delivery of NP antigen using dissolvable microneedle skin patches that could induce both significant B cell and T cell responses.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linfócitos B/imunologia , Vacinas contra COVID-19/administração & dosagem , Proteínas do Nucleocapsídeo de Coronavírus/administração & dosagem , Ensaio de Imunoadsorção Enzimática , Injeções Intradérmicas/métodos , Camundongos , Camundongos Endogâmicos BALB C , Fosfoproteínas/administração & dosagem , Fosfoproteínas/imunologia
15.
Cancer Cell Int ; 21(1): 268, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006286

RESUMO

BACKGROUND: Accumulating evidences indicate that the signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3) plays a key role in the development and progression of many human cancers. However, the underlying mechanism and prognosis value of SCUBE3 in breast cancer are still unclear. METHODS: The clinical data of 137 patients with breast cancer who underwent surgical resection in Taizhou Hospital of Zhejiang Province were retrospectively analyzed. We first conducted a comprehensive study on the expression pattern of SCUBE3 using the Tumor Immune Estimation Resource (TIMER) and UALCAN databases. In addition, the expression of SCUBE3 in breast tumor tissues was confirmed by immunohistochemistry. The protein-protein interaction analysis and functional enrichment analysis of SCUBE3 were analyzed using the STRING and Enrichr databases. Moreover, tissue microarray (TMA) was used to analyze the relationship between SCUBE3 expression levels and clinical-pathological parameters, such as histological type, grade, the status of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor (HER2). We further supplemented and identified the above results using the UALCAN and bc-GenExMiner v4.4 databases from TCGA data. The correlation between the expression of SCUBE3 and survival was calculated by multivariate Cox regression analysis to investigate whether SCUBE3 expression may be an independent prognostic factor of breast cancer. RESULTS: We found that the expression level of SCUBE3 was significantly upregulated in breast cancer tissue compared with adjacent normal tissues. The results showed that the distribution of breast cancer patients in the high expression group and the low expression group was significantly different in ER, PR, HER2, E-cadherin, and survival state (p < 0.05), but there was no significant difference in histologic grade, histologic type, tumor size, lymph node metastasis, TMN stage, subtypes, or recurrence (p > 0.05). In addition, the high expression of SCUBE3 was associated with relatively poor prognosis of ER- (p = 0.012), PR- (p = 0.029), HER2 + (p = 0.007). The multivariate Cox regression analysis showed that the hazard ratio (HR) was 2.80 (95% CI 1.20-6.51, p = 0.0168) in individuals with high SCUBE3 expression, and HR was increased by 1.86 (95% CI 1.06-3.25, p = 0.0300) for per 1-point increase of SCUBE3 expression. CONCLUSIONS: These findings demonstrate that the high expression of SCUBE3 indicates poor prognosis in breast cancer. SCUBE3 expression may serve as a potential diagnostic indicator of breast cancer.

16.
Eur Radiol ; 31(10): 7936-7944, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33856523

RESUMO

OBJECTIVES: To evaluate the value of Demetics and to explore whether Demetics can help radiologists with varying years of experience in the differential diagnosis of benign from malignant thyroid nodules. METHODS: The clinical application value of Demetics was assessed by comparing the diagnostic accuracy of radiologists before and after applying Demetics. This retrospective analysis included 284 thyroid nodules that underwent pathological examinations. Two different combined methods were applied. Using method 1: the original TI-RADS classification was forcibly upgraded or downgraded by one level when Demetics classified the thyroid nodules as malignant or benign. Using method 2: the TI-RADS and benign or malignant classification of the thyroid nodules were flexibly adjusted after the physician learned the Demetics' results. RESULTS: Demetics exhibited a higher sensitivity than did junior radiologist 1 (pD1 = 0.029) and was similar in sensitivity to the two senior radiologists. Demetics had a higher AUC than both junior radiologists (pD1 = 0.042, pD2 = 0.038) and an AUC similar to that of the senior radiologists. The sensitivity (p = 0.035) and AUC (p = 0.031) of junior radiologist 1 and the specificity (p < 0.001) and AUC (p = 0.026) of junior radiologist 2 improved with combined method 1. The AUC of junior radiologist 2 improved with combined method 2 (p = 0.045). The factors influencing the diagnostic results of Demetics include sonographic signs (echogenicity and echogenic foci), contrast of the image, and nodule size. CONCLUSION: Demetics exhibited high sensitivity and accuracy in the differential diagnosis of benign from malignant thyroid nodules. Demetics could improve the diagnostic accuracy of junior radiologists. KEY POINTS: • Demetics exhibited a high sensitivity and accuracy in the differential diagnosis of benign from malignant thyroid nodules. • Demetics could improve the diagnostic accuracy of junior radiologists in the differential diagnosis of benign from malignant thyroid nodules. • Factors influencing the diagnostic results of Demetics include the sonographic signs (echogenicity and echogenic foci), contrast of the image, and nodule size.


Assuntos
Nódulo da Glândula Tireoide , Diagnóstico Diferencial , Humanos , Estudos Retrospectivos , Sensibilidade e Especificidade , Nódulo da Glândula Tireoide/diagnóstico por imagem , Ultrassonografia
17.
Protein J ; 40(5): 709-720, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33877560

RESUMO

Malignant melanoma, an increasingly common form of skin cancer, poses a significant threat to public health, especially when the disease progresses past skin lesions to the stage of advanced metastasis. In this work, a new anti-tumor peptide, temporin La (T-La), was selected from a cDNA library generated from bullfrog skin. Two new derivative antitumor peptides, T-La (S) and T-La (FS), were designed by bioinformatics analysis and coupled with the RGD small molecule peptide to create chimeric RGD peptides, (RGD-T-La [S] and RGD-T-La [FS]). Preliminary experiments showed that the new antitumor peptides had significant antitumor effects. After coupling to the chimeric RGD peptide, the targeted treatment of mouse melanoma was significantly improved. Our data demonstrate that the 4 peptides tested herein significantly inhibited the proliferation, migration, and invasion of B16F10 cells; with an increase in polypeptide concentration, the proportion of melanoma cells in the G0/G1 phase decreased or increased significantly, respectively, the reactive oxygen species (ROS) content increased significantly, the mitochondrial membrane potential decreased significantly, and the expression of pro-apoptotic Bax, Caspase-3, and Caspase-9 increased, and anti-apoptotic Bcl-2 decreased significantly. Tyr and MITF genes were significantly downregulated. In conclusion, the use of these new anti-tumor peptides, when combined with a chimeric RGD peptide, may increase ROS levels and decrease mitochondrial membrane potential by inhibiting the activity of mitochondria, thus releasing apoptosis-promoting factors in B16F10 cells. The present study describes a new potential strategy for the application of promising peptides in the treatment of various cancers.

18.
Front Cell Dev Biol ; 9: 632372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816481

RESUMO

Unlike mammals, zebrafish can regenerate injured hearts even in the adult stage. Cardiac regeneration requires the coordination of cardiomyocyte (CM) proliferation and migration. The TGF-ß/Smad3 signaling pathway has been implicated in cardiac regeneration, but the molecular mechanisms by which this pathway regulates CM proliferation and migration have not been fully illustrated. Here, we investigated the function of TGF-ß/Smad3 signaling in a zebrafish model of ventricular ablation. Multiple components of this pathway were upregulated/activated after injury. Utilizing a specific inhibitor of Smad3, we detected an increased ratio of unrecovered hearts. Transcriptomic analysis suggested that the TGF-ß/Smad3 signaling pathway could affect CM proliferation and migration. Further analysis demonstrated that the CM cell cycle was disrupted and the epithelial-mesenchymal transition (EMT)-like response was impaired, which limited cardiac regeneration. Altogether, our study reveals an important function of TGF-ß/Smad3 signaling in CM cell cycle progression and EMT process during zebrafish ventricle regeneration.

19.
Emerg Microbes Infect ; 10(1): 874-884, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33890550

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic is unlikely to abate until sufficient herd immunity is built up by either natural infection or vaccination. We previously identified ten linear immunodominant sites on the SARS-CoV-2 spike protein of which four are located within the RBD. Therefore, we designed two linkerimmunodominant site (LIS) vaccine candidates which are composed of four immunodominant sites within the RBD (RBD-ID) or all the 10 immunodominant sites within the whole spike (S-ID). They were administered by subcutaneous injection and were tested for immunogenicity and in vivo protective efficacy in a hamster model for COVID-19. We showed that the S-ID vaccine induced significantly better neutralizing antibody response than RBD-ID and alum control. As expected, hamsters vaccinated by S-ID had significantly less body weight loss, lung viral load, and histopathological changes of pneumonia. The S-ID has the potential to be an effective vaccine for protection against COVID-19.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Cricetinae , Feminino , Células HEK293 , Humanos , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Vacinação
20.
Int J Nanomedicine ; 16: 1961-1976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33727809

RESUMO

Introduction: Metastatic breast cancer seriously harms women's health and is currently the tumour type with the highest mortality rate in women. Recently, the combinatorial therapeutic approaches that integrate anti-cancer drugs and genetic agents is an attractive and promising strategy for the treatment of metastatic breast cancer. Moreover, such a combination strategy requires better drug carriers that can effectively deliver the cargo to the breast cancer cells and achieve controlled release in the cells to achieve better therapeutic effects. Methods: The tumour-targeted and redox-responsive mesoporous silica nanoparticles (MSNs) functionalised with DNA aptamers (AS1411) as a co-delivery system was developed and investigated for the potential against metastatic breast cancer. Doxorubicin (Dox) was loaded onto the MSNs, while AS1411 and a small interfering RNA (siTIE2) were employed as gatekeepers via attachment to the MSNs with redox-sensitive disulfide bonds. Results: The controlled release of Dox and siTIE2 was associated with intracellular glutathione. AS1411 mediated the targeted delivery of Dox by increasing its cellular uptake in metastatic breast cancer, ultimately resulting in a lower IC50 in MDA-MB-231 cells (human breast cancer cell line with high metastatic potency), improved biodistribution in tumour-bearing mice, and enhanced in vivo anti-tumour effects. The in vitro cell migration/invasion assay and in vivo anti-metastatic study revealed synergism in the co-delivery system that suppresses cancer cell metastasis. Conclusion: The tumour-targeted and redox-responsive MSN prepared in this study are promising for the effective delivery and controlled release of Dox and siTIE2 for improved treatment of metastatic breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/uso terapêutico , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , Dióxido de Silício/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/farmacologia , Preparações de Ação Retardada/uso terapêutico , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Endocitose/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/ultraestrutura , Invasividade Neoplásica , Metástase Neoplásica , Oxirredução , Porosidade , RNA Interferente Pequeno/farmacologia , Distribuição Tecidual/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...