Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(6): 3240-3245, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31973518

RESUMO

Due to the intriguing chemical variability and structure-property flexibility, molecular materials with striking multifunctional characteristics, including tunable physical, chemical, optical, and electronic properties, have aroused wide attention. Recently, great advances have also been made in designing molecular ferroelastics with optoelectronic properties. However, the band gaps of the most typical ferroelastics are far in excess of 2.0 eV, which severely hinder their further applications. And this corresponds to the inherent incompatibility of ferroelastics. Herein we report an organometallic compound, ferrocenium tetrachloroferrate (1), undergoing a ferroelastic phase transition at 407.7 K with a large spontaneous strain of 0.1088. To the best of our knowledge, this is the first molecular ferroelastic with such a high Curie temperature (Tc) and narrow band gap of 1.61 eV. UV-vis absorption spectra and density-functional theory (DFT) calculation confirm this band gap. The band gap of 1 is determined by both the ferrocenium and the tetrachloroferrate components. The ideal semiconducting characteristic makes a breakthrough in the inherent incompatibility with ferroelastics. This will inspire an intriguing and further research in molecular ferroelastics with ideal semiconductor characteristics and hold great potential for the utilization in optoelectronic devices, especially the photovoltaic applications.

2.
Dalton Trans ; 49(7): 2159-2167, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31994553

RESUMO

The effect of screening the CoII moment of monomeric [CoIIL2(H2O)] (L = 8-hydroxyquinaldine), having a trigonal bipyramid coordination, by diamagnetic Zn in CoxZn1-x solid solutions on its magnetic relaxation was explored using ac-susceptibility, high-field electron-spin-resonance measurements and CASPT2 calculations. The retention of the crystal structure for all the solid solutions was demonstrated using single crystal diffraction. The dc-magnetization and theoretical fittings of the susceptibility for Co1 and Co0.1Zn0.9 gave a large zero-field-splitting (ZFS) D of 50 ± 6 cm-1, and very weak dipole interaction between the nearest neighbors, while EPR and calculations confirmed the positive sign of the axial component (D). Consistent parameters were obtained from experiments and theory. Importantly, only field-induced relaxation was observed for the samples with less than 50% Co and a gradual change in the barrier energy to moment reversal and relaxation times was observed between 11% and 20% Co, while both were enhanced for higher dilutions. The results establish a clear barrier for extending the longevity of the magnetism for this type of single-ion species by lowering the intramolecular interactions. The results suggest that the magnetic interaction persists up to the second sphere, that is, for a dilution of 1 in 9 (11% Co). Importantly, this method is applicable to all single-ion magnet systems, that is, the optimum dilution concentration to restrain the dipole field can be given only by the single crystal structure.

3.
Chem Commun (Camb) ; 55(85): 12873-12876, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31599287

RESUMO

A brand new europium(iii) ß-diketonate complex undergoes a single-crystal-to-single-crystal transformation via [2+2] cycloaddition after UV irradiation, triggering strong Eu(iii) red emission turn-on, which is highly photostable even after 50 hours of irradiation. A photo-patterning process is successfully conducted for security printing application in materials science.

4.
Dalton Trans ; 48(35): 13472-13482, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31454007

RESUMO

Four chair-like hexanuclear Fe-Ln complexes containing mixed organic ligands, namely, [Fe4Ln2{(py)2CO2}4(pdm)2(NO3)2(H2O)2Cl4]·xCH3CN·yH2O (Ln = GdIII (1, x = 1, y = 0), DyIII (2, x = 1, y = 1), HoIII (3, x = 0, y = 2), and ErIII (4, x = 1, y = 3); (py)2CO2H2 = the gem-diol form of di-2-pyridyl ketone and pdmH2 = 2,6-pyridinedimethanol) have been obtained by employing di-2-pyridyl ketone and 2,6-pyridinedimethanol reacting with FeCl3 and Ln(NO3)3 in MeCN. The structures of 1-4 are similar to each other except for the number of lattice solvent molecules. Four FeIII and two LnIII in these complexes comprise a chair-like core with the "body" constructed by four FeIII ions and the "end" constructed by two LnIII ions. Among the four compounds, 2 shows field-induced single molecule magnet behavior as revealed by ac magnetic susceptibility studies, with the effective energy barrier and the pre-exponential factor of 22.07 K and 8.44 × 10-7 s, respectively. Ab initio calculations indicated that, among 2_Dy, 3_Ho and 4_Er fragments, the energy gap between the lowest two spin-orbit states for 2_Dy is the largest, while the tunneling gap for 2 is the smallest. These might be the reasons for complex 2 exhibiting SMM behavior. Additionally, the orientations of the magnetic anisotropy of DyIII in 2 were obtained by electrostatic calculations and ab initio calculations, both indicating that the directions of the main magnetic axis of Dy1 ions are almost aligned along Dy1-O5 (O5 from the pdm2- ligand).

5.
Dalton Trans ; 48(27): 10011-10022, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31172151

RESUMO

Four tetranuclear 3d-4f complexes, namely [Fe2Ln2(L)2(teaH)2(Cl)2](NO3)2·4CH3CN (H2L = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine, teaH3 = triethanolamine, Ln = Dy for 1 and Ln = Gd for 1') and [Co2Ln2(L)2(pdm)2(CH3COO)2(CH3OH)2](NO3)2·xCH3OH·yH2O (pdmH2 = 2,6-pyridinedimethanol, Ln = Dy, x = 5 and y = 2.5 for 2 and Ln = Gd, x = 6 and y = 1.5 for 2'), have been reported. Two FeIII and two DyIII in 1 formed a zigzag Fe1-Dy1-Dy1a-Fe1a arrangement with a Fe1-Dy1-Dy1a angle of 105.328(3)°. However, in contrast to 1, two CoIII and two DyIII ions in 2 formed a more linear Co1-Dy1-Dy1a-Co1a arrangement with a Co1-Dy1-Dy1a angle of 141.86(2)°. Additionally, two DyIII ions in 1 are eight-coordinated with a triangular dodecahedron geometry, while two DyIII ions in 2 adopt nine-coordination with a muffin geometry. Magnetic studies revealed slow magnetic relaxation behavior for 1, with an energy barrier Ea of 6.9 K. For 2, single molecule magnet behavior was presented under a zero dc field with an effective energy barrier Ueff of 64.0(9) K. Ab initio calculations for 1 and 2 indicate that compared to 2, complex 1 has a larger transversal magnetic moment of its ground Kramers doublets (KD) and a larger value of the tunnelling parameter (Δt) for the exchanged coupled ground state, which may result in poor single molecule magnet behavior for 1.

6.
Inorg Chem ; 58(4): 2463-2470, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30714376

RESUMO

The unpredictability of the polyoxometalate (POM) coordination model and the diversity of organic ligands provide more possibilities for the exploration and fabrication of various novel POM-based materials. In this work, a series of POM-based lanthanide (Ln)-Schiff base nanoclusters, [Ln(H2O)2(DAPSC)]2[Ln(H2O)3(DAPSC)]2[(SiW12O40)]3·15H2O (Ln = Sm, 1; Eu, 2; Tb, 3), have been successfully isolated by the reaction of classical Keggin POMs, a Ln3+ ion, and a Schiff-base ligand [2,6-diacetylpyridine bis(semicarbazone), abbreviated as DAPSC]. Both the hindrance effect of the organic ligand and charge balance endow the cluster with fascinating structural features of discrete and linear arrangement. The title compounds with dimensions of ca. 4 × 1 × 1 nm3 are first trimeric polyoxometalate-based nanosized compounds, constructed by saturated POM anions (SiW12O404-, denoted as SiW12). Moreover, the properties (stability, electrochemistry, third-order nonlinear optics, and magnetism) of the compounds have also been studied.

7.
Inorg Chem ; 58(4): 2645-2651, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30730717

RESUMO

Polyoxovanadates (III) are important class of polyoxometalates in molecular magnetism field, and particularly the systems which contain vanadium(III) centers. To date, only very few highly reduced vanadium polynuclear complexes were reported, which remains a significant challenge to synthesize novel polyoxovanadates, owing to the characteristics of easily oxidized vanadium(III). Herein, two unprecedented petaloid chiral octanuclear polyoxovanadates, l- and d-[H2N(CH3)2]12.5(H3N(CH2)2NH3)(H3O)1.5(VIIIµ2-OH)8(SO4)16·2H2O (L-, D-V8), have been successfully obtained by solvothermal method without any chiral auxiliary. Both L- and D-V8 compounds contain the motif eight-membered ring (Vµ2-O)8(SO4)16 constituted of three different chiral entangled loops with the V atoms as nodes. Bond valence calculation (BVC) analysis indicates that all the V ions existed in L, D-V8 are +3 value. The magnetic behavior of compounds indicated ferromagnetic coupling between vanadium(III) ions. To our knowledge, it is the first chiral highly reduced polyoxovanadates that exhibit excellent ferromagnetism.

8.
Dalton Trans ; 48(2): 512-522, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30520910

RESUMO

In this work, we report the syntheses, crystal structures and magnetic properties of three novel Zn-Ln mixed metal complexes, namely [Zn4Dy2(L1)2(L2)2(N3)2]Cl2·2H2O (1), [Zn4Tb2(L1)2(L2)2(Cl)2][ZnN3Cl3]·2H2O (2), and [Zn4Gd2(L1)2(L2)2(Cl)2][ZnN3Cl3]·2H2O (3), in which L12- and L23- were formed from the ligand L [L = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine] through in situ reactions. Interestingly, carbon dioxide in air was absorbed in the process of forming carbamate ligand L23-; this can be ascribed to the insertion of CO2 into M-N amide bonds. Moreover, 1 and 2 represent the first series of 3d-4f SMMs containing carbamate ligands by fixation of CO2 in air. Single-crystal X-ray diffraction analyses reveal that the crystal structures of 1 and 2 are anion-dependent, i.e., the apical positions of the two ZnII ions in 1 and 2 are occupied by an N atom of N3- and by Cl-, respectively. However, the topologies of 2 and 3 are similar. Two ZnII ions and one LnIII (Ln = Dy (1), Tb (2) and Gd (3)) form nearly linear trinuclear [Zn2Ln] units which are double-bridged by two L23- ligands. Magnetic studies reveal that two complexes show single molecule magnet behavior under a direct current (dc) field, with effective energy barriers (Ueff) of 30.66(5) K for 1 and 8.87(3) K for 2. Ab initio calculations reveal that the DyIII ions in 1 and the TbIII ions in 2 are axial in nature; however, a difference in the tunnel splitting of 1 and 2 leads to variation in the magnetization blockades of the two complexes. Theoretical calculations also indicate that the directions of the main magnetic axes severely deviate from the coordination atoms of the first spheres of DyIII and TbIII in 1 and 2; thus further results in poor SMM behavior of the two complexes.

9.
J Am Chem Soc ; 140(36): 11219-11222, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30137987

RESUMO

Despite wide potential applications of Gd-clusters in magnetocaloric effect (MCE) owing to f7 electron configuration of Gd(III), the structural improvement in order to enhance MCE remains difficult. A new approach of the situ hydrolysis of acetonitrile is reported, and the slow release of small ligand CH3COO- is realized in the design and synthesis of high-nuclearity lanthanide clusters. A large lanthanide-exclusive cluster complex, [Gd60(CO3)8(CH3COO)12(µ2-OH)24(µ3-OH)96(H2O)56](NO3)15Br12(dmp)5·30CH3OH·20Hdmp (1-Gd60), was isolated under solvothermal conditions. To the best our knowledge, cluster 1 possesses the high metal/ligand ratio (magnetic density) and the largest magnetic entropy change (- Δ Smmax = 48.0 J kg-1 K-1 at 2 K for Δ H = 7 T) among previously reported high-nuclearity lanthanide clusters.

10.
Inorg Chem ; 57(17): 10761-10767, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30109925

RESUMO

Two cobalt complexes with similar structures were synthesized using quinoline-2-carboxylic acid (HL) as the ligand. Both complexes are six-coordinated in antitriangular prism coordination geometries. There are one and four molecule units per cell for 1 and 2, respectively, with nearest Co-Co distances of 7.129 and 5.855 Å, respectively, which lead to their intermolecular interactions zj'. Both complexes are field-induced single-ion magnets. Complex 1 shows single slow relaxation under Hdc = 1.5 kOe attributed to the moment reversal, while complex 2 shows double slow relaxation resulting from intermolecular dipolar interaction and moment reversal, respectively.

11.
Chem Commun (Camb) ; 54(26): 3278-3281, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29537016

RESUMO

DyIII(depma)3(NO3)3 (1) and DyIII(depma)4(NO3)2(CF3SO3) (2) differ structurally by the number of depma ligands and the supramolecular interactions (π-π and C-Hπ, respectively) between anthracene moieties. They exhibit single-ion-magnetism which is coupled to photo- and mechanochromism that are partially reversible by thermal annealing. The changes are associated with the formation and destruction of excimers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA