Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Circ Res ; 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092465

RESUMO

Rationale: Previous translational studies implicate plasma extracellular microRNA-30d (miR-30d) as a biomarker in left ventricular (LV) remodeling and clinical outcome in heart failure (HF) patients, though precise mechanisms remain obscure. Objective: To investigate the mechanism of miR-30d-mediated cardioprotection in HF. Methods and Results: In rat and mouse models of ischemic HF, we show that miR-30d gain of function (genetic, lentivirus or agomiR-mediated) improves cardiac function, decreases myocardial fibrosis, and attenuates cardiomyocyte (CM) apoptosis. Genetic or locked nucleic acid (LNA)-based knock-down of miR-30d expression potentiates pathological LV remodeling, with increased dysfunction, fibrosis, and CM death. RNA-seq of in vitro miR-30d gain and loss of function, together with bioinformatic prediction and experimental validation in cardiac myocytes and fibroblasts, were used to identify and validate direct targets of miR-30d. miR-30d expression is selectively enriched in CMs, induced by hypoxic stress and is acutely protective, targeting mitogen-associate protein kinase (MAP4K4) to ameliorate apoptosis. Moreover, miR-30d is secreted primarily in extracellular vesicles by CMs and inhibits fibroblast proliferation and activation by directly targeting integrin α5 in the acute phase via paracrine signaling to cardiac fibroblasts. In the chronic phase of ischemic remodeling, lower expression of miR-30d in the heart and plasma EVs is associated with adverse remodeling in rodent models and human subjects, and is linked to whole blood expression of genes implicated in fibrosis and inflammation, consistent with observations in model systems. Conclusions: These findings provide the mechanistic underpinning for the cardioprotective association of miR-30d in human HF. More broadly, our findings support an emerging paradigm involving intercellular communication of EV-contained miRNAs to trans regulate distinct signaling pathways across cell types. Functionally validated RNA biomarkers and their signaling networks may warrant further investigation as novel therapeutic targets in HF.

2.
Genet Epidemiol ; 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33038041

RESUMO

Multiple methods have been proposed to aggregate genetic variants in a gene or a region and jointly test their association with a trait of interest. However, these joint tests do not provide estimates of the individual effect of each variant. Moreover, few methods have evaluated the joint association of multiple variants with DNA methylation. We propose a method based on linear mixed models to estimate the joint and individual effect of multiple genetic variants on DNA methylation leveraging genomic annotations. Our approach is flexible, can incorporate covariates and annotation features, and takes into account relatedness and linkage disequilibrium (LD). Our method had correct Type-I error and overall high power for different simulated scenarios where we varied the number and specificity of functional annotations, number of causal and total genetic variants, frequency of genetic variants, LD, and genetic variant effect. Our method outperformed the family Sequence Kernel Association Test and had more stable estimations of effects than a classical single-variant linear mixed-effect model. Applied genome-wide to the Framingham Heart Study data, our method identified 921 DNA methylation sites influenced by at least one rare or low-frequency genetic variant located within 50 kilobases (kb) of the DNA methylation site.

3.
Aging (Albany NY) ; 12(14): 14092-14124, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32697766

RESUMO

DNA methylation has fundamental roles in gene programming and aging that may help predict mortality. However, no large-scale study has investigated whether site-specific DNA methylation predicts all-cause mortality. We used the Illumina-HumanMethylation450-BeadChip to identify blood DNA methylation sites associated with all-cause mortality for 12, 300 participants in 12 Cohorts of the Heart and Aging Research in Genetic Epidemiology (CHARGE) Consortium. Over an average 10-year follow-up, there were 2,561 deaths across the cohorts. Nine sites mapping to three intergenic and six gene-specific regions were associated with mortality (P < 9.3x10-7) independently of age and other mortality predictors. Six sites (cg14866069, cg23666362, cg20045320, cg07839457, cg07677157, cg09615688)-mapping respectively to BMPR1B, MIR1973, IFITM3, NLRC5, and two intergenic regions-were associated with reduced mortality risk. The remaining three sites (cg17086398, cg12619262, cg18424841)-mapping respectively to SERINC2, CHST12, and an intergenic region-were associated with increased mortality risk. DNA methylation at each site predicted 5%-15% of all deaths. We also assessed the causal association of those sites to age-related chronic diseases by using Mendelian randomization, identifying weak causal relationship between cg18424841 and cg09615688 with coronary heart disease. Of the nine sites, three (cg20045320, cg07839457, cg07677157) were associated with lower incidence of heart disease risk and two (cg20045320, cg07839457) with smoking and inflammation in prior CHARGE analyses. Methylation of cg20045320, cg07839457, and cg17086398 was associated with decreased expression of nearby genes (IFITM3, IRF, NLRC5, MT1, MT2, MARCKSL1) linked to immune responses and cardiometabolic diseases. These sites may serve as useful clinical tools for mortality risk assessment and preventative care.

4.
Circ Genom Precis Med ; 13(4): e002766, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32525743

RESUMO

BACKGROUND: DNA methylation patterns associated with habitual diet have not been well studied. METHODS: Diet quality was characterized using a Mediterranean-style diet score and the Alternative Healthy Eating Index score. We conducted ethnicity-specific and trans-ethnic epigenome-wide association analyses for diet quality and leukocyte-derived DNA methylation at over 400 000 CpGs (cytosine-guanine dinucleotides) in 5 population-based cohorts including 6662 European ancestry, 2702 African ancestry, and 360 Hispanic ancestry participants. For diet-associated CpGs identified in epigenome-wide analyses, we conducted Mendelian randomization (MR) analysis to examine their relations to cardiovascular disease risk factors and examined their longitudinal associations with all-cause mortality. RESULTS: We identified 30 CpGs associated with either Mediterranean-style diet score or Alternative Healthy Eating Index, or both, in European ancestry participants. Among these CpGs, 12 CpGs were significantly associated with all-cause mortality (Bonferroni corrected P<1.6×10-3). Hypermethylation of cg18181703 (SOCS3) was associated with higher scores of both Mediterranean-style diet score and Alternative Healthy Eating Index and lower risk for all-cause mortality (P=5.7×10-15). Ten additional diet-associated CpGs were nominally associated with all-cause mortality (P<0.05). MR analysis revealed 8 putatively causal associations for 6 CpGs with 4 cardiovascular disease risk factors (body mass index, triglycerides, high-density lipoprotein cholesterol concentrations, and type 2 diabetes mellitus; Bonferroni corrected MR P<4.5×10-4). For example, hypermethylation of cg11250194 (FADS2) was associated with lower triglyceride concentrations (MR, P=1.5×10-14).and hypermethylation of cg02079413 (SNORA54; NAP1L4) was associated with body mass index (corrected MR, P=1×10-6). CONCLUSIONS: Habitual diet quality was associated with differential peripheral leukocyte DNA methylation levels of 30 CpGs, most of which were also associated with multiple health outcomes, in European ancestry individuals. These findings demonstrate that integrative genomic analysis of dietary information may reveal molecular targets for disease prevention and treatment.

5.
Epigenetics ; 15(1-2): 183-198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31282290

RESUMO

DNA methylation (DNAm) and microRNAs (miRNAs) have been implicated in a wide-range of human diseases. While often studied in isolation, DNAm and miRNAs are not independent. We analyzed associations of expression of 283 miRNAs with DNAm at >400K CpG sites in whole blood obtained from 3565 individuals and identified 227 CpGs at which differential methylation was associated with the expression of 40 nearby miRNAs (cis-miR-eQTMs) at FDR<0.01, including 91 independent CpG sites at r2 < 0.2. cis-miR-eQTMs were enriched for CpGs in promoter and polycomb-repressed state regions, and 60% were inversely associated with miRNA expression. Bidirectional Mendelian randomization (MR) analysis further identified 58 cis-miR-eQTMCpG-miRNA pairs where DNAm changes appeared to drive miRNA expression changes and opposite directional effects were unlikely. Integration of genetic variants in joint analyses revealed an average partial between cis-miR-eQTM CpGs and miRNAs of 2% after conditioning on site-specific genetic variation, suggesting that DNAm is an important epigenetic regulator of miRNA expression. Finally, two-step MR analysis was performed to identify putatively causal CpGs driving miRNA expression in relation to human complex traits. We found that an imprinted region on 14q32 that was previously identified in relation to age at menarche is enriched with cis-miR-eQTMs. Nine CpGs and three miRNAs at this locus tested causal for age at menarche, reflecting novel epigenetic-driven molecular pathways underlying this complex trait. Our study sheds light on the joint genetic and epigenetic regulation of miRNA expression and provides insights into the relations of miRNAs to their targets and to complex phenotypes.

6.
Clin Epigenetics ; 11(1): 160, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730017

RESUMO

BACKGROUND: The metabolic syndrome (MetS) is a collection of metabolic disturbances that can lead to various cardiovascular diseases. Previous studies have shown a more adverse metabolic risk profile is associated with more advanced biological aging. The associations between epigenetic biomarkers of age with MetS, however, are not well understood. We therefore investigated the associations between epigenetic age acceleration and MetS severity score and incident MetS. RESULTS: A subset of study participants with available whole blood at examination years 15 and 20 from the Coronary Artery Risk Development in Young Adults Study underwent epigenomic profiling using the Illumina MethylationEPIC Beadchip (~ 850,000 sites). Intrinsic and extrinsic epigenetic age acceleration (IEAA and EEAA) were calculated from DNA methylation levels. The MetS severity score was positively associated with IEAA at years 15 (P = 0.016) and 20 (P = 0.016) and EEAA at year 20 (P = 0.040) in cross-sectional analysis. IEAA at year 20 was significantly associated with incident MetS at year 30 (OR = 1.05 [95% CI 1.01, 1.10], P = 0.028). CONCLUSIONS: To our knowledge, this is the first report of the longitudinal association between epigenetic age acceleration and MetS. These findings suggest that a higher MetS severity score is associated with accelerated epigenetic aging and such aging may play a role in the development of metabolic disorders, potentially serving as a useful biomarker of and early detection tool for future MetS.


Assuntos
Envelhecimento/genética , Doenças Cardiovasculares/etiologia , Metilação de DNA , Síndrome Metabólica/genética , Adolescente , Adulto , Doenças Cardiovasculares/genética , Estudos Transversais , Epigênese Genética , Epigenômica/métodos , Feminino , Humanos , Estudos Longitudinais , Masculino , Síndrome Metabólica/complicações , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto Jovem
7.
Nat Commun ; 10(1): 4267, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537805

RESUMO

Identifying methylation quantitative trait loci (meQTLs) and integrating them with disease-associated variants from genome-wide association studies (GWAS) may illuminate functional mechanisms underlying genetic variant-disease associations. Here, we perform GWAS of >415 thousand CpG methylation sites in whole blood from 4170 individuals and map 4.7 million cis- and 630 thousand trans-meQTL variants targeting >120 thousand CpGs. Independent replication is performed in 1347 participants from two studies. By linking cis-meQTL variants with GWAS results for cardiovascular disease (CVD) traits, we identify 92 putatively causal CpGs for CVD traits by Mendelian randomization analysis. Further integrating gene expression data reveals evidence of cis CpG-transcript pairs causally linked to CVD. In addition, we identify 22 trans-meQTL hotspots each targeting more than 30 CpGs and find that trans-meQTL hotspots appear to act in cis on expression of nearby transcriptional regulatory genes. Our findings provide a powerful meQTL resource and shed light on DNA methylation involvement in human diseases.


Assuntos
Doenças Cardiovasculares/genética , Metilação de DNA/genética , Predisposição Genética para Doença/genética , Locos de Características Quantitativas/genética , Idoso , Ilhas de CpG/genética , Feminino , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
8.
PLoS One ; 14(8): e0219261, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31393881

RESUMO

Emerging evidence suggests microRNAs (miRNAs) may play an important role in explaining variation in stroke risk and recovery in humans, yet there are still few longitudinal studies examining the association between whole blood miRNAs and stroke. Accounting for multiple testing and adjusting for potentially confounding technical and clinical variables, here we show that whole blood miR-574-3p expression was significantly lower in participants with chronic stroke compared to non-cases. To explore the functional relevance of our findings, we analyzed miRNA-mRNA whole blood co-expression, pathway enrichment, and brain tissue gene expression. Results suggest miR-574-3p is involved in neurometabolic and chronic neuronal injury response pathways, including brain gene expression of DBNDD2 and ELOVL1. These results suggest miR-574-3p plays a role in regulating chronic brain and systemic cellular response to stroke and thus may implicate miR-574-3p as a partial mediator of long-term stroke outcomes.


Assuntos
MicroRNAs/genética , Acidente Vascular Cerebral/genética , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Elongases de Ácidos Graxos/genética , Elongases de Ácidos Graxos/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Estudos Longitudinais , Masculino , MicroRNAs/sangue , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Fatores de Risco , Transcriptoma/genética
9.
Circulation ; 140(8): 645-657, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31424985

RESUMO

BACKGROUND: DNA methylation is implicated in coronary heart disease (CHD), but current evidence is based on small, cross-sectional studies. We examined blood DNA methylation in relation to incident CHD across multiple prospective cohorts. METHODS: Nine population-based cohorts from the United States and Europe profiled epigenome-wide blood leukocyte DNA methylation using the Illumina Infinium 450k microarray, and prospectively ascertained CHD events including coronary insufficiency/unstable angina, recognized myocardial infarction, coronary revascularization, and coronary death. Cohorts conducted race-specific analyses adjusted for age, sex, smoking, education, body mass index, blood cell type proportions, and technical variables. We conducted fixed-effect meta-analyses across cohorts. RESULTS: Among 11 461 individuals (mean age 64 years, 67% women, 35% African American) free of CHD at baseline, 1895 developed CHD during a mean follow-up of 11.2 years. Methylation levels at 52 CpG (cytosine-phosphate-guanine) sites were associated with incident CHD or myocardial infarction (false discovery rate<0.05). These CpGs map to genes with key roles in calcium regulation (ATP2B2, CASR, GUCA1B, HPCAL1), and genes identified in genome- and epigenome-wide studies of serum calcium (CASR), serum calcium-related risk of CHD (CASR), coronary artery calcified plaque (PTPRN2), and kidney function (CDH23, HPCAL1), among others. Mendelian randomization analyses supported a causal effect of DNA methylation on incident CHD; these CpGs map to active regulatory regions proximal to long non-coding RNA transcripts. CONCLUSION: Methylation of blood-derived DNA is associated with risk of future CHD across diverse populations and may serve as an informative tool for gaining further insight on the development of CHD.


Assuntos
Doença das Coronárias/diagnóstico , Ilhas de CpG/genética , Metilação de DNA/fisiologia , Leucócitos/fisiologia , Infarto do Miocárdio/diagnóstico , Adulto , Idoso , Estudos de Coortes , Doença das Coronárias/epidemiologia , Europa (Continente)/epidemiologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/epidemiologia , Grupos Populacionais , Prognóstico , Estudos Prospectivos , Risco , Estados Unidos/epidemiologia
10.
Front Cardiovasc Med ; 6: 21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30931314

RESUMO

Blood pressure (BP) is a highly heritable trait and a major cardiovascular disease risk factor. Genome wide association studies (GWAS) have implicated a number of susceptibility loci for systolic (SBP) and diastolic (DBP) blood pressure. However, a large portion of the heritability cannot be explained by the top GWAS loci and a comprehensive understanding of the underlying molecular mechanisms is still lacking. Here, we utilized an integrative genomics approach that leveraged multiple genetic and genomic datasets including (a) GWAS for SBP and DBP from the International Consortium for Blood Pressure (ICBP), (b) expression quantitative trait loci (eQTLs) from genetics of gene expression studies of human tissues related to BP, (c) knowledge-driven biological pathways, and (d) data-driven tissue-specific regulatory gene networks. Integration of these multidimensional datasets revealed tens of pathways and gene subnetworks in vascular tissues, liver, adipose, blood, and brain functionally associated with DBP and SBP. Diverse processes such as platelet production, insulin secretion/signaling, protein catabolism, cell adhesion and junction, immune and inflammation, and cardiac/smooth muscle contraction, were shared between DBP and SBP. Furthermore, "Wnt signaling" and "mammalian target of rapamycin (mTOR) signaling" pathways were found to be unique to SBP, while "cytokine network", and "tryptophan catabolism" to DBP. Incorporation of gene regulatory networks in our analysis informed on key regulator genes that orchestrate tissue-specific subnetworks of genes whose variants together explain ~20% of BP heritability. Our results shed light on the complex mechanisms underlying BP regulation and highlight potential novel targets and pathways for hypertension and cardiovascular diseases.

11.
Diabetes ; 68(5): 1073-1083, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936141

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D). We aimed to identify the peripheral blood DNA methylation signature of hepatic fat. We conducted epigenome-wide association studies of hepatic fat in 3,400 European ancestry (EA) participants and in 401 Hispanic ancestry and 724 African ancestry participants from four population-based cohort studies. Hepatic fat was measured using computed tomography or ultrasound imaging and DNA methylation was assessed at >400,000 cytosine-guanine dinucleotides (CpGs) in whole blood or CD14+ monocytes using a commercial array. We identified 22 CpGs associated with hepatic fat in EA participants at a false discovery rate <0.05 (corresponding P = 6.9 × 10-6) with replication at Bonferroni-corrected P < 8.6 × 10-4 Mendelian randomization analyses supported the association of hypomethylation of cg08309687 (LINC00649) with NAFLD (P = 2.5 × 10-4). Hypomethylation of the same CpG was also associated with risk for new-onset T2D (P = 0.005). Our study demonstrates that a peripheral blood-derived DNA methylation signature is robustly associated with hepatic fat accumulation. The hepatic fat-associated CpGs may represent attractive biomarkers for T2D. Future studies are warranted to explore mechanisms and to examine DNA methylation signatures of NAFLD across racial/ethnic groups.


Assuntos
Metilação de DNA/fisiologia , Gorduras/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Biomarcadores/metabolismo , Metilação de DNA/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Pessoa de Meia-Idade , Fatores de Risco
12.
Hypertension ; 73(2): 497-503, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30624993

RESUMO

Genetic variants at SH2B3 are associated with blood pressure and circulating ß2M (ß-2 microglobulin), a well-characterized kidney filtration biomarker. We hypothesize that circulating ß2M is an independent risk predictor of hypertension and may causally contribute to its development. The study sample consisted of 7 065 Framingham Heart Study participants with measurements of plasma ß2M. Generalized estimating equations were used to test the association of ß2M with prevalent and new-onset hypertension. There were 2 145 (30%) cases of prevalent hypertension at baseline and 886 (21%) cases of incident hypertension during 6 years of follow-up. A 1-SD increase in baseline plasma ß2M was associated with a greater risk of prevalent (odds ratio 1.14, 95% CI 1.05-1.24) and new-onset (odds ratio 1.18, 95% CI 1.07-1.32) hypertension. Individuals within the top ß2M quartile had a greater risk than the bottom quartile for prevalent (odds ratio 1.29, 95% CI 1.05-1.57) and new-onset (odds ratio 1.59, 95% CI 1.20-2.11) hypertension. These associations remained essentially unchanged in analyses restricted to participants free of albuminuria and chronic kidney disease. Mendelian randomization demonstrated that lower SH2B3 expression is causal for increased circulating ß2M levels, and in a hypertensive mouse model, knockout of Sh2b3 increased ß 2 M gene expression. In a community-based study of healthy individuals, higher plasma ß2M levels are associated with increased risk of prevalent and incident hypertension independent of chronic kidney disease status. Overlapping genetic signals for hypertension and ß2M, in conjunction with mouse knockout experiments, suggest that the SH2B3-ß2M axis plays a causal role in hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Proteínas/fisiologia , Microglobulina beta-2/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Animais , Estudos Transversais , Feminino , Humanos , Hipertensão/etiologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Análise da Randomização Mendeliana , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
13.
Nat Commun ; 9(1): 3853, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228274

RESUMO

In the originally published version of this Article, financial support was not fully acknowledged. The sentence "KS was supported by the 'Biomedical Research Program' funds at Weill Cornell Medicine in Qatar, a program funded by the Qatar Foundation" has been added to the acknowledgement section in both the PDF and HTML versions of the Article.

14.
Nat Commun ; 9(1): 3268, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111768

RESUMO

Identifying genetic variants associated with circulating protein concentrations (protein quantitative trait loci; pQTLs) and integrating them with variants from genome-wide association studies (GWAS) may illuminate the proteome's causal role in disease and bridge a knowledge gap regarding SNP-disease associations. We provide the results of GWAS of 71 high-value cardiovascular disease proteins in 6861 Framingham Heart Study participants and independent external replication. We report the mapping of over 16,000 pQTL variants and their functional relevance. We provide an integrated plasma protein-QTL database. Thirteen proteins harbor pQTL variants that match coronary disease-risk variants from GWAS or test causal for coronary disease by Mendelian randomization. Eight of these proteins predict new-onset cardiovascular disease events in Framingham participants. We demonstrate that identifying pQTLs, integrating them with GWAS results, employing Mendelian randomization, and prospectively testing protein-trait associations holds potential for elucidating causal genes, proteins, and pathways for cardiovascular disease and may identify targets for its prevention and treatment.


Assuntos
Proteínas Sanguíneas/genética , Doenças Cardiovasculares/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Adulto , Doenças Cardiovasculares/metabolismo , Mapeamento Cromossômico , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Transdução de Sinais/genética
15.
JAMA Cardiol ; 3(9): 871-876, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090932

RESUMO

Importance: Mortality is high among patients heart failure (HF) who are receiving treatment, and therefore identifying new pathways rooted in preclinical cardiac remodeling phenotypes may afford novel biomarkers and therapeutic avenues. Circulating extracellular RNAs (ex-RNAs) are an emerging class of biomarkers with target-organ epigenetic effects relevant to myocardial biology, although large human investigations remain limited. Objective: To measure the association of highly expressed circulating ex-RNAs with left ventricular remodeling and incident HF in a community-based cohort. Design, Setting, and Participants: This is a prospective observational cohort study of individuals who were included in the eighth examination of the Framingham Offspring Cohort (2005-2008). Collected data include measurements of the left ventricle via electrocardiography, determination of circulating ex-RNAs in plasma, and incidence of heart failure. Data analysis was completed from December 2016 to June 2018. Exposures: A total of 398 circulating ex-RNA molecules in plasma were measured by reverse transcription polymerase chain reaction; disease ontology analysis was also performed. Main Outcomes and Measures: Echocardiographic indices of left ventricular (LV) remodeling and incident heart failure. Results: A total of 2763 participants of the Framingham Heart Study with measured ex-RNAs (mean [SD] age, 66.3 [9.0] years; 1499 [54.3%] female) were included in this study. Of this sample, 2429 to 2432 individuals had echocardiographic measures recorded (depending on the measurement). A total of 2681 individuals had HF status determined, of whom 116 (4.3%) experienced HF (median [interquartile range] follow-up, 7.7 [6.6-8.6] years). We identified 12 ex-RNAs associated with LV mass and at least 1 other echocardiographic phenotype (LV end-diastolic volume or left atrial dimension). Of these 12 ex-RNAs, 3 micro RNAs (miR-17, miR-20a, and miR-106b) were associated with a 15% reduction in long-term incident HF per 2-fold increase in circulating level during the follow-up period, after adjustments for age, sex, established HF risk factors, and prevalent or interim myocardial infarction. These 3 RNAs shared sequence homology and targeted a shared group of messenger RNAs that specified pathways relevant to HF (eg, transforming growth factor-ß signaling, growth/cell cycle, and apoptosis), and shared a disease association with hypertension in disease ontology analysis. Conclusions and Relevance: This study identifies a group of circulating, noncoding RNAs associated with echocardiographic phenotypes, long-term incident HF, and pathways relevant to myocardial remodeling in a large community-based sample. Further investigations into the functional biology of these ex-RNAs are warranted for surveillance for HF prevention.


Assuntos
Insuficiência Cardíaca/epidemiologia , Ventrículos do Coração/diagnóstico por imagem , MicroRNAs/sangue , Infarto do Miocárdio/epidemiologia , Remodelação Ventricular , Idoso , Ecocardiografia , Feminino , Insuficiência Cardíaca/genética , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Estudos Prospectivos , Análise de Sobrevida
16.
Nat Commun ; 9(1): 2976, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061609

RESUMO

Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of lung function and clinical relevance of implicated loci.


Assuntos
Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Pneumopatias/etnologia , Pneumopatias/genética , Pulmão/fisiologia , Polimorfismo de Nucleotídeo Único , Grupo com Ancestrais do Continente Africano/genética , Americanos Asiáticos , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Volume Expiratório Forçado , Predisposição Genética para Doença , Genômica , Hispano-Americanos , Humanos , Masculino , Doença Pulmonar Obstrutiva Crônica , Locos de Características Quantitativas , Análise de Regressão , Tamanho da Amostra , Fumar , Capacidade Vital
17.
Front Pharmacol ; 9: 207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740313

RESUMO

Background: Transmembrane tumor necrosis factor (TNF) receptors are involved in inflammatory, apoptotic, and proliferative processes. In the bloodstream, soluble TNF receptor II (sTNFR2) can modify the inflammatory response of immune cells and is predictive of cardiovascular disease risk. We hypothesize that sTNFR2 is associated with epigenetic modifications of circulating leukocytes, which may relate to the pathophysiology underlying atherogenic risk. Methods: We conducted an epigenome-wide association study of sTNFR2 levels in the Framingham Heart Study Offspring cohort (examination 8; 2005-2008). sTNFR2 was quantitated by enzyme immunoassay and DNA methylation by microarray. The concentration of sTNFR2 was loge-transformed and outliers were excluded. We conducted linear mixed effects models to test the association between sTNFR2 level and methylation at over 400,000 CpGs, adjusting for age, sex, BMI, smoking, imputed cell count, technical covariates, and accounting for familial relatedness. Results: The study sample included 2468 participants (mean age: 67 ± 9 years, 52% women, mean sTNFR2 level 2661 ± 1078 pg/ml). After accounting for multiple testing, we identified 168 CpGs (P < 1.2 × 10-7) that were differentially methylated in relation to sTNFR2. A substantial proportion (27 CpGs; 16%) are in the major histocompatibility complex region and in loci overrepresented for antigen binding molecular functions (P = 1.7 × 10-4) and antigen processing and presentation biological processes (P = 1.3 × 10-8). Identified CpGs are enriched in active regulatory regions and associated with expression of 48 cis-genes (±500 kb) in whole blood (P < 1.1 × 10-5) that coincide with genes identified in GWAS of diseases of immune dysregulation (inflammatory bowel disease, type 1 diabetes, IgA nephropathy). Conclusion: Differentially methylated loci in leukocytes associated with sTNF2 levels reside in active regulatory regions, are overrepresented in antigen processes, and are linked to inflammatory diseases.

18.
Sci Rep ; 8(1): 6397, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686252

RESUMO

Viral infections associate with disease risk and select families of viruses encode miRNAs that control an efficient viral cycle. The association of viral miRNA expression with disease in a large human population has not been previously explored. We sequenced plasma RNA from 40 participants of the Framingham Heart Study (FHS, Offspring Cohort, Visit 8) and identified 3 viral miRNAs from 3 different human Herpesviridae. These miRNAs were mostly related to viral latency and have not been previously detected in human plasma. Viral miRNA expression was then screened in the plasma of 2763 participants of the remaining cohort utilizing high-throughput RT-qPCR. All 3 viral miRNAs associated with combinations of inflammatory or prothrombotic circulating biomarkers (sTNFRII, IL-6, sICAM1, OPG, P-selectin) but did not associate with hypertension, coronary heart disease or cancer. Using a large observational population, we demonstrate that the presence of select viral miRNAs in the human circulation associate with inflammatory biomarkers and possibly immune response, but fail to associate with overt disease. This study greatly extends smaller singular observations of viral miRNAs in the human circulation and suggests that select viral miRNAs, such as those for latency, may not impact disease manifestation.


Assuntos
Vírus de DNA/genética , Herpesviridae/genética , MicroRNAs/sangue , MicroRNAs/genética , RNA Viral/genética , Perfilação da Expressão Gênica , Humanos
19.
JAMA Cardiol ; 3(6): 463-472, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29617535

RESUMO

Importance: Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine with manifold consequences for mammalian pathophysiology, including cardiovascular disease. A deeper understanding of TNF-α biology may enhance treatment precision. Objective: To conduct an epigenome-wide analysis of blood-derived DNA methylation and TNF-α levels and to assess the clinical relevance of findings. Design, Setting, and Participants: This meta-analysis assessed epigenome-wide associations in circulating TNF-α concentrations from 5 cohort studies and 1 interventional trial, with replication in 3 additional cohort studies. Follow-up analyses investigated associations of identified methylation loci with gene expression and incident coronary heart disease; this meta-analysis included 11 461 participants who experienced 1895 coronary events. Exposures: Circulating TNF-α concentration. Main Outcomes and Measures: DNA methylation at approximately 450 000 loci, neighboring DNA sequence variation, gene expression, and incident coronary heart disease. Results: The discovery cohort included 4794 participants, and the replication study included 816 participants (overall mean [SD] age, 60.7 [8.5] years). In the discovery stage, circulating TNF-α levels were associated with methylation of 7 cytosine-phosphate-guanine (CpG) sites, 3 of which were located in or near DTX3L-PARP9 at cg00959259 (ß [SE] = -0.01 [0.003]; P = 7.36 × 10-8), cg08122652 (ß [SE] = -0.008 [0.002]; P = 2.24 × 10-7), and cg22930808(ß [SE] = -0.01 [0.002]; P = 6.92 × 10-8); NLRC5 at cg16411857 (ß [SE] = -0.01 [0.002]; P = 2.14 × 10-13) and cg07839457 (ß [SE] = -0.02 [0.003]; P = 6.31 × 10-10); or ABO, at cg13683939 (ß [SE] = 0.04 [0.008]; P = 1.42 × 10-7) and cg24267699 (ß [SE] = -0.009 [0.002]; P = 1.67 × 10-7), after accounting for multiple testing. Of these, negative associations between TNF-α concentration and methylation of 2 loci in NLRC5 and 1 in DTX3L-14 PARP9 were replicated. Replicated TNF-α-linked CpG sites were associated with 9% to 19% decreased risk of incident coronary heart disease per 10% higher methylation per CpG site (cg16411857: hazard ratio [HR], 0.86; 95% CI, 0.78-1.95; P = .003; cg07839457: HR, 0.89; 95% CI, 0.80-0.94; P = 3.1 × 10-5; cg00959259: HR, 0.91; 95% CI, 0.84-0.97; P = .002; cg08122652: HR, 0.81; 95% CI, 0.74-0.89; P = 2.0 × 10-5). Conclusions and Relevance: We identified and replicated novel epigenetic correlates of circulating TNF-α concentration in blood samples and linked these loci to coronary heart disease risk, opening opportunities for validation and therapeutic applications.


Assuntos
Doença das Coronárias/sangue , Doença das Coronárias/epidemiologia , Metilação de DNA , Fator de Necrose Tumoral alfa/sangue , Idoso , Feminino , Estudo de Associação Genômica Ampla , Humanos , Incidência , Masculino , Pessoa de Meia-Idade
20.
Hypertension ; 71(3): 457-464, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29311254

RESUMO

Recently, 2 transcriptome-wide studies identified 40 genes that were differentially expressed in relation to blood pressure. However, to what extent these BP-related gene expression signatures and their associations with BP are driven by genetic or environmental factors has not been investigated. In this study of 391 twins (193 twin pairs and 5 singletons; age 55-69 years; 40% male; 57% monozygous) recruited from the Finnish Twin Cohort, transcriptome-wide data on peripheral leukocytes were obtained using the Illumina HT12 V4 array. Our transcriptome-wide analysis identified 1 gene (MOK [MAPK/MAK/MRK overlapping kinase], P=7.16×10-8) with its expression levels associated with systolic BP at the cutoff of false-discovery rate <0.05. This association was further replicated in the Framingham Heart Study (P=1.02×10-5). Out of the 40 genes previously reported, 12 genes could be replicated in the twin cohort with false-discovery rate <0.05 and consistent direction of effect. Univariate twin modeling showed that genetic factors contributed to the expression variations of 12 genes with heritability estimates ranging from 6% to 65%. Bivariate twin modeling showed that 53% of the phenotypic association between systolic BP and MOK expression, and 100% of the phenotypic association of systolic and diastolic BP with CD97 (cluster of differentiation 97), TIPARP (TCDD-inducible poly[ADP-ribose] polymerase), and TPPP3 expression could be explained by genetic factors shared in common. In this study of adult twins, we identified one more gene, MOK, with its expression level associated with BP, and replicated several previously identified signals. Our study further provides new insights into the genetic and environmental sources of BP-related gene expression signatures.


Assuntos
Pressão Sanguínea/genética , Regulação da Expressão Gênica , Inquéritos e Questionários , Transcriptoma/genética , Gêmeos/genética , Idoso , Análise de Variância , Determinação da Pressão Arterial/métodos , Estudos de Coortes , Meio Ambiente , Feminino , Finlândia , Estudo de Associação Genômica Ampla/métodos , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Valores de Referência , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA