Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 8: 449-477, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34541413

RESUMO

Regulation of cell behaviors and even cell fates is of great significance in diverse biomedical applications such as cancer treatment, cell-based therapy, and tissue engineering. During the past decades, diverse methods have been developed to regulate cell behaviors such as applying external stimuli, delivering exogenous molecules into cell interior and changing the physicochemical properties of the substrates where cells adhere. Photothermal scaffolds/surfaces refer to a kind of materials embedded or coated with photothermal agents that can absorb light with proper wavelength (usually in near infrared region) and convert light energy to heat; the generated heat shows great potential for regulation of cell behaviors in different ways. In the current review, we summarize the recent research progress, especially over the past decade, of using photothermal scaffolds/surfaces to regulate cell behaviors, which could be further categorized into three types: (i) killing the tumor cells via hyperthermia or thermal ablation, (ii) engineering cells by intracellular delivery of exogenous molecules via photothermal poration of cell membranes, and (iii) releasing a single cell or an intact cell sheet via modulation of surface physicochemical properties in response to heat. In the end, challenges and perspectives in these areas are commented.

2.
Food Chem ; 371: 131383, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808776

RESUMO

Previously we reported the cytoprotective effects of polyphenols rich in hydroxyl groups against ZnO nanoparticles (NPs). This study used RNA-sequencing to evaluate the toxicity of ZnO NPs and epigallocatechin gallate (EGCG) to 3D Caco-2 spheroids. EGCG altered the colloidal stability of ZnO NPs, shown as the changes of atomic force microscopic height, solubility in cell culture medium, and hydrodynamic sizes. EGCG almost completely reversed ZnO NP-induced cytotoxicity, and consistently, alleviated ZnO NP-induced gene ontology (GO) terms and genes related with apoptosis. EGCG also modestly decreased intracellular Zn ions and changed GO terms and genes related with endocytosis/exocytosis in ZnO NP-exposed spheroids. Meanwhile, EGCG changed ZnO NP-induced alteration of GO terms and genes related with the functions of mitochondria, endoplasmic reticulum and lysosomes. We concluded that EGCG alleviated the cytotoxicity of ZnO NPs to 3D Caco-2 spheroids by altering NPs' colloidal properties and the pathways related with internalization and organelle dysfunction.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Células CACO-2 , Catequina/análogos & derivados , Humanos , Solubilidade , Óxido de Zinco/toxicidade
3.
Cell Biol Toxicol ; 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34766255

RESUMO

Although the neurotoxicity of ZnO nanoparticles (NPs) has been evaluated in animal and nerve cell culture models, these models cannot accurately mimic human brains. Three-dimensional (3D) brain organoids based on human-induced pluripotent stem cells have been developed to study the human brains, but this model has rarely been used to evaluate NP neurotoxicity. We used 3D brain organoids that express cortical layer proteins to investigate the mechanisms of ZnO NP-induced neurotoxicity. Cytotoxicity caused by high levels of ZnO NPs (64 µg/mL) correlated with high intracellular Zn ion levels but not superoxide levels. Exposure to a non-cytotoxic concentration of ZnO NPs (16 µg/mL) increased the autophagy-marker proteins LC3B-II/I but decreased p62 accumulation, whereas a cytotoxic concentration of ZnO NPs (64 µg/mL) decreased LC3B-II/I proteins but did not affect p62 accumulation. Fluorescence micro-optical sectioning tomography revealed that 64 µg/mL ZnO NPs led to decreases in LC3B proteins that were more obvious at the outer layers of the organoids, which were directly exposed to the ZnO NPs. In addition to reducing LC3B proteins in the outer layers, ZnO NPs increased the number of micronuclei in the outer layers but not the inner layers (where LC3B proteins were still expressed). Adding the autophagy flux inhibitor bafilomycin A1 to ZnO NPs increased cytotoxicity and intracellular Zn ion levels, but adding the autophagy inducer rapamycin only slightly decreased cellular Zn ion levels. We conclude that high concentrations of ZnO NPs are cytotoxic to 3D brain organoids via defective autophagy and intracellular accumulation of Zn ions.

4.
J Hazard Mater ; : 127704, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34799167

RESUMO

Titanium dioxide (TiO2) nanomaterials have been shown to promote atherosclerosis through endothelial dysfunction. This study investigated the toxicity of TiO2 nanosheets (NSs) to vascular smooth muscle cells (VSMCs), one of the pivotal cells involved in all stages of atherosclerosis. Only a high concentration of TiO2 NSs (128 µg/mL) modestly induced cytotoxicity by decreasing thiols. RNA-sequencing data revealed that 64 µg/mL TiO2 NSs significantly down-regulated 94 genes and up-regulated 174 genes, respectively. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to SMC function and lipid metabolism were altered. TiO2 NSs increased nuclear factor kappa B subunit 2 (NFKB2), which led to a decrease in VSMC marker actin alpha 2, smooth muscle (ACTA2). On the other hand, macrophage marker CD36 and fatty acid synthase (FASN) proteins were increased. Additionally, TiO2 NSs induced inflammatory cytokines and lipid accumulation, and these effects were curtailed by NFKB inhibitor - triptolide. Furthermore, repeated TiO2 NS injection (5 mg/kg BW, once a day for 5 continuous days) into ICR mice led to increased NFKB2, CD36 and FASN, with a decreased ACTA2. Our results suggested that TiO2 NSs promoted the transformation of VSMCs into foam cells through the up-regulation of NFKB2.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34802769

RESUMO

Membrane separation is one of the most effective strategies for water treatment. However, problems such as poor emulsion separation performance, single function and easy membrane fouling limit its application in dealing with complex wastewater. The synergistic treatment technology of adsorption and visible light catalysis is an efficient and environment-friendly method to degrade organic pollutants. Here, we report a simple method to fabricate Zeolitic Imidazolate Framework-8/Graphene oxide/Polyacrylonitrile (ZIF-8/GO/PAN) nanofibrous membranes and their multifunctional treatment capacity for complex wastewater. The construction of superhydrophilic and underwater superoleophobic surface structure has achieved excellent emulsion separation performance (with a maximum flux of 6779.66 L m-2h-1), visible light photocatalytic degradation (with an efficiency of 96.5% in 90 min) and antibacterial properties. Moreover, the fibrous membrane also shows good biosafety, and will not have toxic effects on aquatic organisms. These excellent performances endow this membrane with great potential in complex wastewater purification.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34842414

RESUMO

In recent years, conductive hydrogels have generated tremendous attention in biomedicals and bioelectronics fields due to their excellent physiochemical properties. In this study, a physically cross-linked conducting hydrogel has been designed in combination with cellulose nanocrystalline (CNC), polyacrylic acid (PAA) chains, laurel methacrylate, and sodium dodecyl sulfate. The obtained result shows that the hydrogel prepared is ultrastretchable, mechanically robust, transparent, biocompatible, conductive, and self-healing. The mechanical property of the prepared hydrogel is optimized through variation of the CNC content. The optimal hydrogel (CNC-1/PAA) exhibits an impressive mechanics, including high stretchability (∼1800%) and compressibility, good elasticity, and fatigue resistance. Furthermore, the conductivity of the hydrogel enables tensile strain- and pressure-sensing capabilities. The CNC/PAA-based flexible sensors are successfully designed, which shows high sensitivity, fast response (290 ms), and excellent cycle stability as well as the pressure sensing capability. As a result, the designed hydrogel has the ability to sense and detect diverse human motion, including elbow/finger/wrist bending and speaking, which demonstrates that the designed self-healing conductive hydrogels have significant potential for applications in flexible electronics.

7.
Nat Nanotechnol ; 16(11): 1281-1291, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675410

RESUMO

Nanoparticle-sensitized photoporation is an upcoming approach for the intracellular delivery of biologics, combining high efficiency and throughput with excellent cell viability. However, as it relies on close contact between nanoparticles and cells, its translation towards clinical applications is hampered by safety and regulatory concerns. Here we show that light-sensitive iron oxide nanoparticles embedded in biocompatible electrospun nanofibres induce membrane permeabilization by photothermal effects without direct cellular contact with the nanoparticles. The photothermal nanofibres have been successfully used to deliver effector molecules, including CRISPR-Cas9 ribonucleoprotein complexes and short interfering RNA, to adherent and suspension cells, including embryonic stem cells and hard-to-transfect T cells, without affecting cell proliferation or phenotype. In vivo experiments furthermore demonstrated successful tumour regression in mice treated with chimeric antibody receptor T cells in which the expression of programmed cell death protein 1 (PD1) is downregulated after nanofibre photoporation with short interfering RNA to PD1. In conclusion, cell membrane permeabilization with photothermal nanofibres is a promising concept towards the safe and more efficient production of engineered cells for therapeutic applications, including stem cell or adoptive T cell therapy.

8.
J Colloid Interface Sci ; 608(Pt 1): 164-174, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34626964

RESUMO

Developing multifunctional, efficient and durable membrane for long-term usage for treating complex oily wastewater is highly desirable but still a challenge due to the severe membrane fouling. Herein, a hierarchical structured superhydrophilic/underwater superoleophobic nanofibrous with antifouling and visible-light-induced self-cleaning performance was manufactured by a facile combination of electrospun silver/ß-cyclodextrin/polyacrylonitrile (Ag/ß-CD/PAN) nanofibers and then the in-situ growth of a zinc oxide (ZnO) layer. The formed micro/nano sized hierarchical structure greatly increased the roughness and improved the underwater superoleophobic ability of the membrane. Therefore, the resultant ZnO/Ag/ß-CD/PAN membrane displays splendid separation performance for oil/dye/water complex emulsions and high flux recovery (>90%). Meanwhile, the permeation flux of a variety of oil/water emulsions was higher than 619 L m-2h-1 with a separation efficiency above 99.7% under the action of gravity. Furthermore, the as-fabricated membrane exhibits excellent stability towards different harsh conditions (e. g. corrosive solution, high temperature, UV irradiation and ultrasound washing). The robust mechanical and chemical stability, outstanding separation capabilities as well as excellent flux recovery capabilities makes the self-cleaning membrane a good candidate for the remediation of complex oily wastewater.

9.
ACS Appl Mater Interfaces ; 13(41): 48403-48413, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34610742

RESUMO

Biofilms formed from the pathogenic bacteria that attach to the surfaces of biomedical devices and implantable materials result in various persistent and chronic bacterial infections, posing serious threats to human health. Compared to the elimination of matured biofilms, prevention of the formation of biofilms is expected to be a more effective way for the treatment of biofilm-associated infections. Herein, we develop a facile method for endowing diverse substrates with long-term antibiofilm property by deposition of a hybrid film composed of tannic acid/Cu ion (TA/Cu) complex and poly(ethylene glycol) (PEG). In this system, the TA/Cu complex acts as a multifunctional building block with three different roles: (i) as a versatile "glue" with universal adherent property for substrate modification, (ii) as a photothermal biocidal agent for bacterial elimination under irradiation of near-infrared (NIR) laser, and (iii) as a potent linker for immobilization of PEG with inherent antifouling property to inhibit adhesion and accumulation of bacteria. The resulted hybrid film shows negligible cytotoxicity and good histocompatibility and could prevent biofilm formation for at least 15 days in vitro and suppress bacterial infection in vivo, showing great potential for practical applications to solve the biofilm-associated problems of biomedical materials and devices.

10.
Mater Horiz ; 8(12): 3356-3367, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34657943

RESUMO

Considering the operation reliability of flexible and optical electronics (FOEs) in dynamic and real-world environments, autonomous self-healing electromagnetic interference (EMI) shielding materials with high transparency, good stretchability and excellent tear-resistance are urgently required but always difficult to achieve due to the poor dynamics of their elastic substrates. Herein, we propose a facile strategy to design a highly dynamic polyurea elastomer (PDMS-MPI-HDI) featuring with ultrahigh optical transparency (>94%), ultralow elastic modulus (<1 MPa), high tear-resistant stretchability (800%), and ultrafast autonomous self-healing (100 s for scratch-healing). Taking PDMS-MPI-HDI as a substrate for embedding silver nanowires (Ag NWs), the first transparent, stretchable and self-healable EMI shielding materials (Ag NWs/PDMS-MPI-HDI) are presented. Failure behavior of Ag NWs/PDMS-MPI-HDI is highly tolerant of prefabricated cracks under deformation. Due to the robust interfacial adhesion between Ag NWs and PDMS-MPI-HDI, the fractured Ag NW network can autonomously self-reconstruct during the healing process of PDMS-MPI-HDI substrates, contributing to the complete restoration of EMI shielding effectiveness (SE) and full erasure of scratches at both the resting and stretching states. Besides, Ag NWs/PDMS-MPI-HDI exhibits fast autonomous self-healing at high (60 °C) and low (0 °C) temperatures, and in artificial sweat, which is essential for FOEs applicable in various practical environments.

11.
Chem Commun (Camb) ; 57(73): 9288-9291, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519323

RESUMO

A green biopolymer, lignosulfonate acid (LSA), was first used as an additive in the Nafion membrane for fuel cell applications. The Nafion/LSA composite membrane displayed enhanced thermal stability and other satisfactory properties due to the stable aromatic groups and multiple active sites of LSA. More importantly, the cost-effectiveness and simple fabrication of such novel composite PEMs make their use in PEMFCs very attractive and economical.

12.
ACS Appl Mater Interfaces ; 13(38): 45191-45200, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34519474

RESUMO

Pathogenic biofilms formed on the surfaces of implantable medical devices and materials pose an urgent global healthcare problem. Although conventional antibacterial surfaces based on bacteria-repelling or bacteria-killing strategies can delay biofilm formation to some extent, they usually fail in long-term applications, and it remains challenging to eradicate recalcitrant biofilms once they are established and mature. From the viewpoint of microbiology, a promising strategy may be to target the middle stage of biofilm formation including the main biological processes involved in biofilm development. In this work, a dual-functional antibiofilm surface is developed based on copolymer brushes of 2-hydroxyethyl methacrylate (HEMA) and 3-(acrylamido)phenylboronic acid (APBA), with quercetin (Qe, a natural antibiofilm molecule) incorporated via acid-responsive boronate ester bonds. Due to the antifouling properties of the hydrophilic poly(HEMA) component, the resulting surface is able to suppress bacterial adhesion and aggregation in the early stages of contact. A few bacteria are eventually able to break through the protection of the anti-adhesion layer leading to bacterial colonization. In response to the resulting decrease in the pH of the microenvironment, the surface could then release Qe to interfere with the microbiological processes related to biofilm formation. Compared to bactericidal and anti-adhesive surfaces, this dual-functional surface showed significantly improved antibiofilm performance to prevent biofilm formation involving both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus for up to 3 days. In addition, both the copolymer and Qe are negligibly cytotoxic, thereby avoiding possible harmful effects on adjacent normal cells and the risk of bacterial resistance. This dual-functional design approach addresses the different stages of biofilm formation, and (in accordance with the growth process of the biofilm) allows sequential activation of the functions without compromising the viability of adjacent normal cells. A simple and reliable solution may thus be provided to the problems associated with biofilms on surfaces in various biomedical applications.

13.
ACS Appl Mater Interfaces ; 13(34): 40249-40266, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34424682

RESUMO

Disruption of intestinal homeostasis is an important event in the development of inflammatory bowel disease (IBD), and genistein (GEN) is a candidate medicine to prevent IBD. However, the clinical application of GEN is restricted owing to its low oral bioavailability. Herein, a reactive oxygen species (ROS)-responsive nanomaterial (defined as GEN-NP2) containing superoxidase dismutase-mimetic temporally conjugated ß-cyclodextrin and 4-(hydroxymethyl)phenylboronic acid pinacol ester-modified GEN was prepared. GEN-NP2 effectively delivered GEN to the inflammation site and protected GEN from rapid metabolism and elimination in the gastrointestinal tract. In response to high ROS levels, GEN was site-specifically released and accumulated at inflammatory sites. Mechanistically, GEN-NP2 effectively increased the expression of estrogen receptor ß (ERß), simultaneously reduced the expression of proinflammatory mediators (apoptosis-associated speck-like protein containing a CARD (ASC) and Caspase1-p20), attenuated the infiltration of inflammatory cells, promoted autophagy of intestinal epithelial cells, inhibited the secretion of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), modulated the gut microbiota, and ultimately alleviated colitis. In addition, the oral administration of these nanoparticles showed excellent safety, thereby providing confidence in the further development of precise treatments for IBD.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 261: 120014, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091361

RESUMO

Rapid, accurate and efficient detection of acidic pH and citric acid (CA) changes is of great significance for predicting environmental and food safety problems by fluorescence analysis technique. Herein, a small molecule ratiometric fluorescent probe (BICL) based on benzoindole derivatives is successfully synthesized and characterized and used for quantitatively and qualitatively "turn-on" detection acid pH and CA changes in solution and environment by ultraviolet spectrum and fluorescence emission spectrum. On the one hand, the probe has a good linear relation to acidic pH in the pH range 3.1-4.5 (I604/I550 = 13.088-2.3878pH, R2 = 0.9986). On the other hand, the probe has a good linear relationship in the range of CA concentration of 14.0-23.0 µM (I604/I550 = 0.5324 [CA]-5.2628, R2 = 0.9993) and a low detection limit of 2.967 µM. BICL has a good recovery rate in the range of 114.6 ~ 101.0% and a low relative standard deviation (RSD) (0.0011 ~ 0.0092) in the determination of CA in real samples (water, drinks and fruits), which holds great potential for application in determination of CA in real samples. Importantly, the probe has good blood compatibility, and it has been successfully applied to detect exogenously induced changes in acidic pH and CA in zebrafish with great time-stability by using fluorescence imaging technology, respectively.


Assuntos
Corantes Fluorescentes , Peixe-Zebra , Animais , Ácido Cítrico , Concentração de Íons de Hidrogênio , Imagem Óptica , Espectrometria de Fluorescência
15.
Bioorg Chem ; 114: 105103, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34174630

RESUMO

Fluorescence probe combines with fluorescence imaging technology has become the most powerful analytical method with their great advantages of high sensitivity and selectivity and real-time monitoring. Ni2+ is widely distributed in food, environment and living animals, thereof, it is of great significance for detection Ni2+ with high selectivity. Herein, a simple strategy is proposed to design and synthesiz a small molecule fluorescent probe Y1 by using "one-pot" method. The spectroscopic behaviors including UV-Vis absorption and fluorescence emission spectrum have been used to verify the feasibility of probe towards Ni2+ in water/EtOH (v/v = 2:8) mixtures under neutral condition. As expected, Y1 offers high selectivity and sensitivity for detection Ni2+ in aqueous solution with a good linear relationship and low detection limit within Ni2+ concentration variation from 0 to 13 µM (DOL = 0.0038 µM, R2 = 0.9983). It is remarkable that Y1 can be applied for real-time visualization Ni2+ change in sprouted potato and zebrafish with great photo-stability, highlighting that the practicability and feasibility of Y1 to detect and monitor Ni2+ in the field of food industry and biomedical field.

16.
Adv Mater ; 33(27): e2008379, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34050986

RESUMO

Photodynamic and photothermal cell killing at the surface of tissues finds applications in medicine. However, a lack of control over heat dissipation following a treatment with light might damage surrounding tissues. A new strategy to kill cells at the surface of tissues is reported. Polymeric films are designed in which iron oxide nanoparticles are embedded as photosensitizers. Irradiation of the films with pulsed laser light generates water vapor bubbles at the surface of the films. It is found that "bubble-films" can kill cells in close proximity to the films due to mechanical forces which arise when the bubbles collapse. Local irradiation of bubble-films allows for spatial selective single cell killing. As nanosurgery becomes attractive in ophthalmology to remove superficial tumors, bubble-films are applied on the cornea and it is found that irradiation of the bubble-films allows spatial and selective killing of corneal cells. As i) the photosensitizer is embedded in the films, which reduces its uptake by cells and spreading into tissues and ii) the bubble-films can be removed from the tissue after laser treatment, while iii) a low laser fluence is sufficient to generate vapor bubbles, it is foreseen that bubble-films might become promising for safe resection of superficial tumors.

17.
ACS Appl Mater Interfaces ; 13(20): 23293-23313, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33974391

RESUMO

Air filtration materials (AFMs) have gradually become a research hotspot on account of the increasing attention paid to the global air quality problem. However, most AFMs cannot balance the contradiction between high filtration efficiency and low pressure drop. Electrospinning nanofibers have a large surface area to volume ratio, an adjustable porous structure, and a simple preparation process that make them an appropriate candidate for filtration materials. Therefore, electrospun nanofibers have attracted increased attention in air filtration applications. In this paper, first, the preparation methods of high-performance electrospun air filtration membranes (EAFMs) and the typical surface structures and filtration principles of electrospun fibers for air filtration are reviewed. Second, the research progress of EAFMs with multistructures, including nanoprotrusion, wrinkled, porous, branched, hollow, core-shell, ribbon, beaded, nets structure, and the application of these nanofibers in air filtration are summarized. Finally, challenges with the fabrication of EAFMs, limitations of their use, and trends for future developments are presented.

18.
ACS Appl Mater Interfaces ; 13(19): 22874-22883, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33944545

RESUMO

With increasing water pollution and human health problems caused by oily wastewater, the fabrication of oil-water separation materials has become an urgent task. However, most of the reported materials have a single function and poor performance. In this paper, a multifunctional zinc oxide/polyaniline/polyacrylonitrile (ZnO/PANI/PAN) nanofibrous membrane with needle-like ZnO nanorods was prepared by in situ synthesis of PANI and a hydrothermal reaction on a highly stable self-standing PAN blow-spinning fibrous membrane. Due to the electronic synergistic effect of ZnO and PANI, the fibrous membrane exhibits excellent antibacterial activity and visible-light degradation ability of organic dyes. Moreover, the micro-/nanosized pores of the ZnO/PANI/PAN fibrous membranes also guarantee its excellent emulsion separation performance, including an ultrahigh surfactant-free emulsion permeate flux (∼8597.40 L/(m2 h)), ultrahigh surfactant-stabilized emulsion permeate flux (∼2253.50 L/(m2 h)), and excellent separation efficiency (above 99%). Furthermore, the composite membrane maintains stable underwater superoleophobicity and hydrophilicity under adverse conditions, shows good biological safety, and is harmless to the water environment. These excellent properties endow the ZnO/PANI/PAN nanofibrous membranes with great potential in treating oily wastewater.

19.
Chem Soc Rev ; 50(9): 5746-5776, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33972972

RESUMO

Stimuli-responsive nanobubbles have received increased attention for their application in spatial and temporal resolution of diagnostic techniques and therapies, particularly in multiple imaging methods, and they thus have significant potential for applications in the field of biomedicine. This review presents an overview of the recent advances in the development of stimuli-responsive nanobubbles and their novel applications. Properties of both internal- and external-stimuli responsive nanobubbles are highlighted and discussed considering the potential features required for biomedical applications. Furthermore, the methods used for synthesis and characterization of nanobubbles are outlined. Finally, novel biomedical applications are proposed alongside the advantages and shortcomings inherent to stimuli-responsive nanobubbles.


Assuntos
Pesquisa Biomédica , Nanoestruturas/química , Tamanho da Partícula , Propriedades de Superfície
20.
J Colloid Interface Sci ; 597: 48-55, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33866211

RESUMO

Particulate matter (PM) air pollution is becoming more and more serious and dangerous to public health, especially in developing countries where industrialization is accelerating. The use of electrospun membrane-based materials for air filtration is a widespread and effective way to help individuals avoid air pollution. However, most electrospun membrane preparation processes require the use of organic solvents, resulting in secondary environmental pollution. In this study, an environmentally friendly polyvinyl alcohol (PVA) - tannic acid (TA) composite nanofiber membrane filter was prepared by the green electrospinning and the physical cross-linking method. The filtration efficiency of the membrane filter for PM1.0 reached 99.5%, and the pressure drop was only 35 Pa. In addition, due to the existence of intermolecular hydrogen bond between PVA and TA, the mechanical properties of the nanofiber membrane were improved to meet the requirements of practical application of the filter. Therefore, the PVA-TA composite nanofiber membrane is expected to provide a solution for the development of efficient and environmentally friendly air filter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...