Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.591
Filtrar
2.
J Biomed Sci ; 29(1): 32, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35546402

RESUMO

BACKGROUND: Aberrant DNA repair pathways contribute to malignant transformation or disease progression and the acquisition of drug resistance in multiple myeloma (MM); therefore, these pathways could be therapeutically exploited. Ribonucleotide reductase (RNR) is the rate-limiting enzyme for the biosynthesis of deoxyribonucleotides (dNTPs), which are essential for DNA replication and DNA damage repair. In this study, we explored the efficacy of the novel RNR inhibitor, 4-hydroxysalicylanilide (HDS), in myeloma cells and xenograft model. In addition, we assessed the clinical activity and safety of HDS in patients with MM. METHODS: We applied bioinformatic, genetic, and pharmacological approaches to demonstrate that HDS was an RNR inhibitor that directly bound to RNR subunit M2 (RRM2). The activity of HDS alone or in synergy with standard treatments was evaluated in vitro and in vivo. We also initiated a phase I clinical trial of single-agent HDS in MM patients (ClinicalTrials.gov: NCT03670173) to assess safety and efficacy. RESULTS: HDS inhibited the activity of RNR by directly targeting RRM2. HDS decreased the RNR-mediated dNTP synthesis and concomitantly inhibited DNA damage repair, resulting in the accumulation of endogenous unrepaired DNA double-strand breaks (DSBs), thus inhibiting MM cell proliferation and inducing apoptosis. Moreover, HDS overcame the protective effects of IL-6, IGF-1 and bone marrow stromal cells (BMSCs) on MM cells. HDS prolonged survival in a MM xenograft model and induced synergistic anti-myeloma activity in combination with melphalan and bortezomib. HDS also showed a favorable safety profile and demonstrated clinical activity against MM. CONCLUSIONS: Our study provides a rationale for the clinical evaluation of HDS as an anti-myeloma agent, either alone or in combination with standard treatments for MM. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03670173, Registered 12 September 2018.

3.
Front Nutr ; 9: 877975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571932

RESUMO

Emerging evidence has revealed the dysbiosis of gut microbiota contributes to development of metabolic diseases in animals. However, the potential interaction between gut microbiota and host metabolism in growing hens under metabolic disorder induced by chronic heat exposure (CHE) remains inconclusive. The aim of our study was to examine the potential association among the cecal microbiota community, physiological indicators, and serum metabolite profiles in CHE hens. One hundred and eighty Hy-Line Brown hens were randomly allocated into three groups: thermoneutral control (TN), heat stress (HS), and pair-fed (PF). The experiment lasted for 5 weeks, with the first 2 weeks serving as the adaptation period. Results showed that the expression level of heat shock protein 70 (HSP70) in both serum and cecal tissues was significantly increased in the HS group. Serum parameters analysis also revealed that CHE caused physiological function damage and metabolic disorders. These results suggest the experiment was successful, inducing chronic heat stress. 16S rRNA sequencing analysis showed that the CHE can clearly induce dysbiosis of the gut microbial community reflected in the increment of the F/B ratio. Besides, serum untargeted metabolomics revealed the relative concentrations of 40 metabolites were significantly altered in the HS group compared with the TN group. Pathway analysis showed that these metabolites were mainly involving the increased proteolysis rather than lipolysis, and this tendency could be a specific metabolic adaptation of the poultry. The pair-feed experiment showed that the above changes induced by CHE were partly independent from the reduction of feed intake. Mantel correlation analysis between gut microorganisms and physiological indicators showed that the phylum Firmicutes and Euryarchaeota have a potential interaction with a serum lipid parameter. Random forest analysis showed that both genus Faecalibacterium and Methanobrevibacter were important predictors of the CHE-induced lipid metabolism disorder. Taken together, our findings may contribute to a better understanding of the metabolic mechanisms underlying the energy metabolism imbalance caused by the CHE and provide novel insights into the host-microbes interactions and its effects on the metabolic adaptation of hens under chronic heat exposure.

4.
iScience ; 25(5): 104248, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35573191

RESUMO

Bulk aluminum rarely forms deformation or annealing twins owing to its high stacking fault energy. We report a novel twinning mechanism mediated by dynamic recrystallization in 6N pure aluminum under high strain rate (∼1.3 × 104 s-1) impact at a cryogenic temperature (77 K). Discontinuous dynamic recrystallization occurs during rapid severe plastic deformation and generates inhomogeneous microstructures exhibiting low-angle and high-angle grain boundaries. Unexpectedly, Σ3 twin boundaries were able to develop during dynamic recrystallization. Although these recrystallization twins have similar morphology as that of annealing twins, their formation relies on deformation activation instead of thermal activation, which was suppressed by the cryogenic experiment. Besides, strong orientation dependence was observed for formation of these novel twins. Beyond annealing and deformation twin, deformation-activated recrystallization twin is a new path for pure aluminum twinning.

5.
J Colloid Interface Sci ; 622: 690-699, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35533483

RESUMO

The slow conversion of Fe(Ⅱ)/Fe(III) cycle was largely limited the degradation efficiency of many photo-Fenton systems. Herein, four Fe-MOFs nanorods (namely Fe-TCPP-1, Fe-TCPP-2, Fe-TCPP-3, Fe-TCPP-4) with decreasing length-diameter ratios were synthesized in a household microwave oven, using photosensitizer porphyrin and iron ions with Fenton activity as building blocks. Among them, the Fe-TCPP-3 exhibited high photogenerated electron-hole (e--h+) separation efficiency and largest pore structure, endowing Fe-TCPP-3 with superior photo-Fenton property. In addition, Fe-TCPP-3 based photo-Fenton system was applied to efficiently degrade antibiotic ciprofloxacin (CIP) under neutral condition, due to the continuously generated reactive species (h+, e-, OH·, O2·-, 1O2) in Fe-TCPP-3 under visible-light irradiation. With irradiation for 30 min, the degradation efficiency of the system could reach about 73 %, which was about 26-fold towards the system without light irradiation. This study paved a way to modulating the photo-Fenton activity of MOF-based catalysts.

6.
Biosens Bioelectron ; 211: 114349, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35576722

RESUMO

DNA nanomachines, a delicate type of molecular machines, have been a research hotspot in biotechnology and materials. Here a two-dimensional (2D) DNA walking nanomachine with high working efficiency and low cost was easily assembled by using graphene oxide (GO) as the working platform for precisely fluorescent bioassay through the binding of target hepatitis B virus DNA (HBV-DNA) and the driving force of Exonuclease III (Exo III). The presence of HBV-DNA made continuous Exo III digestion of the FAM-modified DNA (FAM-DNA) in double-strand DNA (dsDNA) part in a burnt-bridge mechanism to output a "one-to-more" amplified signal. Accordingly, a 2D DNA walking nanomachine with simple operation and high cost-performance ratio was constructed. The walking speed of nanomachine was found to be regulated by loading DNA density on single sheet of GO. Furthermore, this nanomachine had low background since the dual energy transfer including fluorescence resonance energy transfer (FRET) from FAM to BHQ1 and the long-range resonance energy transfer (LrRET) from FAM to GO, making the biosensing applications highly promising.

7.
J Agric Food Chem ; 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535594

RESUMO

Ionotropic γ-aminobutyric acid (GABA) receptors (iGABARs) are validated targets of drugs and insecticides. Our previous studies showed that the competitive antagonists of insect iGABARs exhibit insecticidal activities and that the 3-isothiazolol scaffold is used as a lead for developing novel iGABAR antagonists. Here, we designed a novel series of 4-aryl-5-(4-pyridinyl)-3-isothiazolol (4-API) analogs that have various aromatic substituents at the 4-position. Two-electrode voltage clamp experiments showed that all synthesized 4-APIs exhibited antagonistic activity against Musca domestica and Spodoptera litura iGABARs (RDL) expressed in oocytes of Xenopus laevis at 100 µM. Of the 4-APIs, the 4-(1,1'-biphenylyl) analog was the most potent antagonist with IC50s of 7.1 and 9.9 µM against M. domestica and S. litura RDL receptors, respectively. This analog also showed a certain insecticidal activity against S. litura larvae, with >75% mortality at 100 µg/g diet. Molecular docking studies with a M. domestica iGABAR model indicated that the π-π stacking interactions formed between the pyridinyl ring and Y252 and between the 4-substituted aromatic group and Y107 might be important for antagonism by the 4-(1,1'-biphenylyl) analog. Our studies provide important information for designing novel iGABAR antagonists and suggest that the 4-APIs acting on iGABARs are promising insecticide leads for further studies.

8.
BMC Oral Health ; 22(1): 165, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524231

RESUMO

BACKGROUND: Morphological evaluation of oral mucosal biopsy is sometimes inconclusive, which may delay the diagnosis and treatment of oral squamous malignancy. Immunohistochemical biomarkers denoting oral squamous malignancy would be clinically helpful in such scenario. METHODS: We first studied the expression patterns of four potential biomarkers (cytokeratin 13, cytokeratin 17, Ki-67 and laminin 5 gamma 2 chain) in an exploratory cohort containing 54 surgical specimens from confirmed oral squamous malignancies. A pattern score was assigned to each specific expression pattern of these four biomarkers. A total score from each specimen was then calculated by summing up the four pattern scores. A cut-off value of total score denoting oral squamous malignancy was then determined. Another 34 oral squamous malignancies that were misdiagnosed as non-malignant lesions on their pre-treatment biopsies were used as a validation cohort to test the clinical utility of this scoring system. RESULTS: In the exploratory cohort, fifty-two (96%) of the 54 confirmed oral squamous malignancies had a total score of 9 and above. In the validation cohort, thirty-one (91%) of the 34 pre-treatment oral biopsy specimens also had a total score of 9 or above, supporting the feasibility of using this scoring system to predict immediate risk of oral squamous malignancy. CONCLUSIONS: Our four-biomarker "oral squamous malignancy scoring system" provides reliable prediction for immediate risk of oral squamous malignancy on pre-treatment oral biopsies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Biomarcadores Tumorais/metabolismo , Biópsia , Carcinoma de Células Escamosas/patologia , Humanos , Mucosa Bucal/patologia , Neoplasias Bucais/patologia
9.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409415

RESUMO

Phytochemicals that interrupt adipocyte lifecycle can provide anti-obesity effects. 1,2,3,4,6-penta-O-galloyl-d-glucose (PGG) is a tannin with two isomers that occurs widely in plants and exhibits various pharmacological activities. The aim of the investigation is to comprehensively examine effects of PGG isomer(s) on adipocyte lifecycle and diet-induced obesity. Human mesenchymal stem cells (hMSC), 3T3-L1 fibroblasts, and H4IIE hepatoma cells were used to determine the effects of PGG isomers on cell viability and adipogenesis. Mice with diet-induced obesity were generated from male C57/BL6 mice fed with a 45% high fat diet. Oral administration of ß-PGG (0.1 and 5 mg/kg) lasted for 14 weeks. Viability was reduced by repeated PGG treatment in hMSC, preadipocytes, and cells under differentiation. PGG mainly induces apoptosis, and this effect is independent of its insulin mimetic action. In vivo, administration of ß-PGG attenuated shortening of the colon, hyperlipidaemia, fat cells and islet hypertrophy in DIO mice. Hepatic steatosis and related gene expression were improved along with glucose intolerance. Increased serum adiponectin, leptin, and glucagon-like peptide-1 levels were also observed. In conclusion, repeated PGG treatment interrupts the adipocyte lifecycle. PGG administration reduces adiposity and fatty liver development in DIO mice, and therefore, PGG could aid in clinical management of obesity.


Assuntos
Adiposidade , Fígado Gorduroso , Adipócitos/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Glucose/farmacologia , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/uso terapêutico , Masculino , Camundongos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo
10.
J Nanobiotechnology ; 20(1): 191, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428303

RESUMO

BACKGROUND: Nanoplastics have been recently found widely distributed in our natural environment where ubiquitously bacteria are major participants in various material cycles. Understanding how nanoplastics interact with bacterial cell membrane is critical to grasp their uptake processes as well as to analyze their associated risks in ecosystems and human microflora. However, little is known about the detailed interaction of differentially charged nanoplastics with bacteria. The present work experimentally and theoretically demonstrated that nanoplastics enter into bacteria depending on the surface charges and cell envelope structural features, and proved the shielding role of membrane lipids against nanoplastics. RESULTS: Positively charged polystyrene nanoplastics (PS-NH2, 80 nm) can efficiently translocate across cell membranes, while negatively charged PS (PS-COOH) and neutral PS show almost no or much less efficacy in translocation. Molecular dynamics simulations revealed that the PS-NH2 displayed more favourable electrostatic interactions with bacterial membranes and was subjected to internalisation through membrane penetration. The positively charged nanoplastics destroy cell envelope of Gram-positive B. subtilis by forming membrane pore, while enter into the Gram-negative E. coli with a relatively intact envelope. The accumulated positively charged nanoplastics conveyed more cell stress by inducing a higher level of reactive oxygen species (ROS). However, the subsequently released membrane lipid-coated nanoplastics were nearly nontoxic to cells, and like wise, stealthy bacteria wrapped up with artifical lipid layers became less sensitive to the positively charged nanoplastics, thereby illustrating that the membrane lipid can shield the strong interaction between the positively charged nanoplastics and cells. CONCLUSIONS: Our findings elucidated the molecular mechanism of nanoplastics' interaction and accumulation within bacteria, and implied the shielding and internalization effect of membrane lipid on toxic nanoplastics could promote bacteria for potential plastic bioremediation.


Assuntos
Microplásticos , Nanopartículas , Ecossistema , Escherichia coli , Humanos , Lipídeos de Membrana , Nanopartículas/química , Poliestirenos/química
11.
Phytomedicine ; 100: 154061, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35364561

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous disease with poor overall survival characterized by various genetic changes. The continuous activation of oncogenic pathways leads to the development of drug resistance and limits current therapeutic efficacy. Therefore, a multi-targeting inhibitor may overcome drug resistance observed in AML treatment. Recently, groups of flavonoids, such as flavones and flavonols, have been shown to inhibit a variety of kinase activities, which provides potential opportunities for further anticancer applications. PURPOSE: In this study, we evaluated the anticancer effects of flavonoid compounds collected from our in-house library and investigated their potential anticancer mechanisms by targeting multiple kinases for inhibition in AML cells. METHODS: The cytotoxic effect of the compounds was detected by cell viability assays. The kinase inhibitory activity of the selected compound was detected by kinase-based and cell-based assays. The binding conformation and interactions were investigated by molecular docking analysis. Flow cytometry was used to evaluate the cell cycle distribution and cell apoptosis. The protein and gene expression were estimated by western blotting and qPCR, respectively. RESULTS: In this study, an O-methylated flavonol (compound 11) was found to possess remarkable cytotoxic activity against AML cells compared to treatment in other cancer cell lines. The compound was demonstrated to act against multiple kinases, which play critical roles in survival signaling in AML, including FLT3, MNK2, RSK, DYRK2 and JAK2 with IC50 values of 1 - 2 µM. Compared to our previous flavonoid compounds, which only showed inhibitions against MNKs or FLT3, compound 11 exhibited multiple kinase inhibitory abilities. Moreover, compound 11 showed effectiveness in inhibiting internal tandem duplications of FLT3 (FLT3-ITDs), which accounts for 25% of AML cases. The interactions between compound 11 and targeted kinases were investigated by molecular docking analysis. Mechanically, compound 11 caused dose-dependent accumulation of leukemic cells at the G0/G1 phase and followed by the cells undergoing apoptosis. CONCLUSION: O-methylated flavonol, compound 11, can target multiple kinases, which may provide potential opportunities for the development of novel therapeutics for drug-resistant AMLs. This work provides a good starting point for further compound optimization.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonóis/farmacologia , Flavonóis/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Simulação de Acoplamento Molecular , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/farmacologia , Tirosina Quinase 3 Semelhante a fms/uso terapêutico
12.
Stem Cell Res ; 61: 102770, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35390758

RESUMO

The Inhibitor of disheveled and axin (Idax) and its ortholog the Retinoid inducible nuclear factor (Rinf) are DNA binding proteins with nuclear and cytoplasmic functions. Rinf is expressed in embryonic stem cells (ESCs) where it regulates transcription of the Ten-eleven translocation (Tet) enzymes, promoting neural and suppressing mesendoderm/trophectoderm differentiation. Here, we find that Idax, which is not expressed in ESCs, is induced upon differentiation. Like Rinf, Idax facilitates neural and silences trophectodermal programs. Individual or combined loss of Idax and Rinf led to downregulation of neural and upregulation of trophectoderm markers during differentiation of ESCs to embryoid bodies as well as during directed differentiation of ESCs to neural progenitor cells (NPCs) and trophoblast-like cells. These defects resemble those of Tet-deficient ESCs. Consistently, Tet genes are direct targets of Idax and Rinf, and loss of Idax and Rinf led to downregulation of Tet enzymes during ESC differentiation to NPCs and trophoblast-like cells. While Idax and Rinf single and double knockout (DKO) mice were viable and overtly normal, DKO embryos had reduced expression of several NPC markers in embryonic forebrains and deregulated expression of selected trophoblast markers in placentas. NPCs derived from DKO forebrains had reduced self-renewal while DKO placentas had increased junctional zone and reduced labyrinth layers. Together, our findings establish Idax and Rinf as regulators of Tet enzymes for proper differentiation of ESCs.


Assuntos
Proteínas de Ligação a DNA , Células-Tronco Neurais , Animais , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Corpos Embrioides/metabolismo , Células-Tronco Embrionárias/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo
13.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457218

RESUMO

Single-stranded DNA (ssDNA)-binding proteins (SSBs) play a central role in cells by participating in DNA metabolism, including replication, repair, recombination, and replication fork restart. SSBs are essential for cell survival and thus an attractive target for potential anti-pathogen chemotherapy. In this study, we determined the crystal structure and examined the size of the ssDNA-binding site of an SSB from Salmonella enterica serovar Typhimurium LT2 (SeSSB), a ubiquitous opportunistic pathogen which is highly resistant to antibiotics. The crystal structure was solved at a resolution of 2.8 Å (PDB ID 7F25), indicating that the SeSSB monomer possesses an oligonucleotide/oligosaccharide-binding (OB) fold domain at its N-terminus and a flexible tail at its C-terminus. The core of the OB-fold in the SeSSB is made of a six-stranded ß-barrel capped by an α-helix. The crystal structure of the SeSSB contained two monomers per asymmetric unit, which may indicate the formation of a dimer. However, the gel-filtration chromatography analysis showed that the SeSSB forms a tetramer in solution. Through an electrophoretic mobility shift analysis, we characterized the stoichiometry of the SeSSB complexed with a series of ssDNA dA homopolymers, and the size of the ssDNA-binding site was determined to be around 22 nt. We also found the flavanonol taxifolin, also known as dihydroquercetin, capable of inhibiting the ssDNA-binding activity of the SeSSB. Thus, this result extended the SSB interactome to include taxifolin, a natural product with a wide range of promising pharmacological activities.


Assuntos
Salmonella enterica , DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica , Quercetina/análogos & derivados , Quercetina/farmacologia , Salmonella enterica/genética , Salmonella typhimurium/genética
14.
J Chin Med Assoc ; 85(5): 584-596, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35385419

RESUMO

BACKGROUND: Magnolol is a component of the bark of Magnolia officinalis, which is a traditional herbal remedy used in China. In this study, we investigated whether magnolol can reduce myocardial injury induced by renal ischemia and reperfusion (I/R). METHODS: Renal I/R was elicited by a 60-minute occlusion of the bilateral renal arteries and a 24-hour reperfusion in Sprague-Dawley rats. Magnolol was administered intravenously 10 minutes before renal I/R to evaluate its effects on myocardial injury induced by renal I/R. RESULTS: Renal I/R significantly increased the serum levels of creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and cardiac troponin I and caused myocardial damage. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive nuclei and caspase-3 activation was significantly increased in the myocardium, indicating increase of apoptosis. Echocardiography revealed left ventricular dysfunction, as evidenced by reduction of left ventricular ejection fraction and left ventricular fractional shortening. Furthermore, serum levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6 were significantly elevated, while the IL-10 level was suppressed. However, intravenously, pretreatment with magnolol at doses of 0.003 and 0.006 mg/kg 10 minutes before renal I/R significantly prevented the increases of CPK, LDH, and cardiac troponin I levels, as well as the histological damage and the apoptosis in the myocardium. Echocardiography showed significant improvement of left ventricular function. Furthermore, the increases in TNF-α, IL-1ß, and IL-6 and the decrease in IL-10 were significantly limited, while Bcl-2 was increased and Bax was decreased in the myocardium. Phosphorylation of Akt and extracellular signal-regulated kinases 1 and 2 was increased, while phosphorylation of p38 and c-Jun N-terminal kinase was reduced. CONCLUSION: Magnolol reduces myocardial injury induced by renal I/R. The underlying mechanisms for this effect might be related to modulation of the production of pro- and anti-inflammatory cytokines and the limiting of apoptosis.


Assuntos
Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Animais , Apoptose , Compostos de Bifenilo , Interleucina-10/farmacologia , Interleucina-6 , Isquemia/patologia , Lignanas , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley , Reperfusão , Volume Sistólico , Troponina I , Fator de Necrose Tumoral alfa , Função Ventricular Esquerda
15.
J Hazard Mater ; 435: 128979, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35472544

RESUMO

Identification of air toxics emitted from light-duty gasoline vehicles (LDGVs) is expected to better protect human health. Here, the volatile organic compound (VOC) and intermediate VOC (IVOC) emissions in the high-emitted start stages were measured on a chassis dynamometer under normal and extreme temperatures for China 6 LDGVs. Low temperature enhanced the emission rates (ERs) of both VOCs and IVOCs. The VOC ERs were averaged 5.19 ± 2.74 times higher when the temperature dropped from 23 °C to 0 °C, and IVOCs were less sensitive to temperature change with an enlargement of 2.27 ± 0.19 times. Aromatics (46.75 ± 2.83%) and alkanes (18.46 ± 1.21%) dominated the cold start VOC emissions under normal temperature, which was quite different from hot running emission profiles. From the perspective of emission inventories, changes in the speciated composition of VOCs and IVOCs were less important than that in the actual magnitude of ERs under cold conditions. However, changes in the ERs and emission profiles were equally important at high temperatures. Furthermore, high time-resolved measurements revealed that low temperature enhanced both the emission peak and peak duration of fuel components and incomplete combustion products during cold start, while high temperature only increased the peak concentration of fuel components.

16.
Artigo em Inglês | MEDLINE | ID: mdl-35457413

RESUMO

University Social Responsibility (USR) enhances educational development and the impact of universities on society. As a stakeholder in USR, it is imperative to develop a comprehensive literacy scale that reflects the development of students' citizenship in social engagement. Thus, this study aims to develop and validate the Health Promotion Literacy-based Scale for students in USR (HPLS-USR). A total of 200 students from USR with an average age of 19.27 participated in the study. The Exploratory Factor Analysis (EFA) was used to verify the scale's construct validity. Twenty-two items were maintained in EFA with an internal consistency Cronbach's α of 0.92. Construct validity was supported by EFA results, confirming that the four-factor structure of the 22-item scale (personal growth, responsibility of citizenship, social interaction, and intellectual growth) have reasonable correlations to each other, explaining 61.83% of the variance in the scale. The Kaiser-Meyer-Olkin index values of 0.908 and Bartlett's Test of Sphericity (p = 0.001) verified the normal distribution of the EFA and the adequacy of the EFA sampling. These items achieved adequate factor loadings ranging between 0.44 and 0.82. This study demonstrated that the HPLS-USR has satisfactory construct validity and reliability in measuring students' literacy abilities developed in USR participation.


Assuntos
Currículo , Responsabilidade Social , Adulto , Humanos , Psicometria/métodos , Reprodutibilidade dos Testes , Inquéritos e Questionários , Universidades , Adulto Jovem
17.
Br J Neurosurg ; : 1-6, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393907

RESUMO

BACKGROUND: Mechanical obstruction is the most common cause of shunt failure for hydrocephalic patients. However, the diagnosis is extremely challenging and often requires invasive testing methods. Thus, a simple and non-invasive technique is in urgent need to predict the intracranial pressure (ICP) of hydrocephalic patients during their post-surgical follow-up, which could help neurosurgeons to determine the conditions of the shunt system. MATERIALS AND METHODS: Two groups of patients were enrolled in the current study. In group I, patients were enrolled as they were diagnosed with high ICP hydrocephalus and received shunt surgery. The shunt valve pressures were taken for their post-surgical ICP. Meanwhile, the participants of group II exhibited abnormally increased lumbar puncture opening pressure (LPOP; from 180 to 400 mmH2O). Both the ICP and LPOP were used to match with their corresponding tympanic membrane temperature (TMT). RESULTS: When patients' ICP were in the normal range (group I, from 50 to 180 mmH2O), the TMT correlated with ICP in a linear regression model (R2 = 0.59, p < 0.001). Interestingly, when patients exhibited above-normal ICP (LPOP was from 180 to 400 mmH2O), their TMT fit well with the ICP in a third-order polynomial regression (R2 = 0.88). When the ICP was 287.98 mmH2O, the TMT approached the vertex, which was 38.54 °C. Based on this TMT-ICP algorithm, we invented a non-invasive ICP monitor system. Interestingly, a tight linear correlation was detected between the ICP data drawn from the non-invasive device and Codman ICP monitoring system (R2 = 0.93, p < 0.01). CONCLUSIONS: We believe the TMT-ICP algorithm (the Y-Jiang model) could be used for preliminary prediction of shunt malfunction as well as monitoring ICP changes.

18.
Front Cell Infect Microbiol ; 12: 865283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402297

RESUMO

Nephropathogenic infectious bronchitis virus (NIBV) is one of the most important viral pathogens in the world poultry industry. Here, we used RT-qPCR, WB and immunofluorescence to explore the interaction between NIBV and the host innate immune system of the kidney. Multiple virions were found in the kidney tissues of the disease group under electron microscopy, and pathological changes such as structural damage of renal tubules and bleeding were observed by HE staining. In addition, we found that the mRNA levels of TLR7, TRAF6, and IKKß were upregulated after NIBV infection. IRF7 mRNA levels decreased significantly at 5 dpi and increased significantly at 11 to 18 dpi. The NF-κB P65 mRNA level increased significantly at 5 to 18 dpi and decreased at 28 dpi. However, NIBV infection-induced NF-κB P65 protein levels were downregulated at multiple time points. Moreover, we demonstrated that the cytokine (IFN-γ, IL-8, and IL-6) mRNA and protein expression levels were increased significantly at multiple time points after NIBV infection. Furthermore, immunofluorescence analysis showed that NF-κB P65 and IFN-γ were mainly located in the nuclear or perinuclear region. The positive signal intensity of NF-κB P65 was significantly lower than that of the normal group at 1 to 5 dpi, and there was no significant change in the subsequent time period. The positive signal intensity of IFN-γ decreased significantly at 5 dpi, and increased significantly at 11 to 28 dpi. In conclusion, we found that NIBV promoted cytokine release through the TLR7/NF-κB signaling axis, thus causing kidney injury.


Assuntos
Vírus da Bronquite Infecciosa , Animais , Galinhas , Citocinas/metabolismo , Vírus da Bronquite Infecciosa/metabolismo , Rim/patologia , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Receptor 7 Toll-Like/genética
20.
Public Health Nurs ; 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452556

RESUMO

BACKGROUND: A practical screening tool for early detection of unhealthy behaviors among adults to provide tailored care can have an important role in public health nursing. PURPOSE: To develop a screening tool with valid psychometric properties for adult health behaviors (AHBs). METHODS: A cross-sectional study was conducted between March 2018 and September 2019 in central-southern Taiwan. The AHBs development included qualitative and quantitative measurement of items based on literature reviews and expert opinion and exploration and confirmatory factor analysis. RESULTS: A total of 765 community adult participants: 377 women and 388 men, with a mean age of 39.3 (SD = 10.6), ranging from 20 to 64 years completed the AHBs screening tool. Analysis of the 23-items AHBs scale identified six dimensions - stress management, physical activity, health responsibility, life appreciation, healthy eating, and oral hygiene accounting for 67.3% of the variance. Total scale scores were significantly associated with a criterion variable of life satisfaction. CONCLUSION: The AHBs scale is a suitable screening tool that can be used to identify adults' unhealthy behaviors early, which is useful for public health nurses to conduct a regular assessment and initiate individualized health programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...