RESUMO
cGAS-STING signalling is induced by detection of foreign or mislocalised host double-stranded (ds)DNA within the cytosol. STING acts as the major signalling hub, where it controls production of type I interferons and inflammatory cytokines. Basally, STING resides on the ER membrane. Following activation STING traffics to the Golgi to initiate downstream signalling and subsequently to endolysosomal compartments for degradation and termination of signalling. While STING is known to be degraded within lysosomes, the mechanisms controlling its delivery remain poorly defined. Here we utilised a proteomics-based approach to assess phosphorylation changes in primary murine macrophages following STING activation. This identified numerous phosphorylation events in proteins involved in intracellular and vesicular transport. We utilised high-temporal microscopy to track STING vesicular transport in live macrophages. We subsequently identified that the endosomal complexes required for transport (ESCRT) pathway detects ubiquitinated STING on vesicles, which facilitates the degradation of STING in murine macrophages. Disruption of ESCRT functionality greatly enhanced STING signalling and cytokine production, thus characterising a mechanism controlling effective termination of STING signalling.
RESUMO
Although various soft pneumatic actuators have been studied, their performance, including load capacity, has not been satisfied yet. Enhancing their actuation capability and using them to develop soft robots with high performance is still an open and challenging issue. In this study, we developed novel pneumatic actuators based on fiber-reinforced airbags as a solution to this problem, of which the maximum pressure reaches more than 100 kPa. Through cellular rearrangement, the developed actuators could bend uni- or bidirectionally, achieving large driving force, large deformation, and high conformability. Hence, they could be used to develop soft manipulators with relatively large payload (up to 10 kg, about 50 times the body self-weight) and soft climbing robots with high mobility. In this article, we first present the design of the airbag-based actuators and then model the airbag to obtain the relationship between the pneumatic pressure, external force, and deformation. Subsequently, we validate the models by comparing the simulated and measured results and test the load capacity of the bending actuators. Afterward, we present the development of a soft pneumatic robot that can rapidly climb horizontal, inclined, and vertical poles with different cross-sectional shapes and even outdoor natural objects, like bamboos, at a speed of 12.6 mm/s generally. In particular, it can dexterously transition between poles at any angle, which, to the best of our knowledge, has not been achieved before.
RESUMO
Field-grown rice (Oryza sativa L.), when exposed to various environmental stresses, produces high amounts of reactive oxygen species, such as H2 O2 . MicroRNAs (miRNAs) play crucial roles in plant stress responses. This study characterized the functions of H2 O2 -regulated miRNAs in rice. Small RNA deep sequencing revealed that miR156 levels decreased following H2 O2 treatment. Searches of the rice transcriptome and degradome databases indicated that OsSPL2 and OsTIFY11b are miR156-target genes. Interactions between miR156 and OsSPL2 and OsTIFY11b were confirmed using transient expression assays through agroinfiltration. In addition, the levels of OsSPL2 and OsTIFY11b transcripts were lower in transgenic rice plants overexpressing miR156 than in wild-type plants. The OsSPL2-GFP and OsTIFY11b-GFP proteins were localized to the nucleus. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated interactions between OsSPL2 and OsTIFY11b. Furthermore, OsTIFY11b interacted with OsMYC2 to regulate the expression of OsRBBI3-3, which encodes a proteinase inhibitor. The results suggested that H2 O2 accumulation in rice suppresses the expression of miR156, and induces the expression of its target genes, OsSPL2 and OsTIFY11b, whose proteins interact in the nucleus to regulate the expression of OsRBBI3-3, which is involved in plant defense.
RESUMO
System leakage critically confines the development of cascade DNA systems that need to be implemented in a strict order-by-order manner. In principle, ternary DNA reactants, composed of three single-strand DNA (ssDNA) with a strict equimolar ratio (1:1:1), have been indispensable for successfully cascading upstream entropy-driven DNA circuit (EDC) with downstream circuits, and system leakage will occur with any unbalance of the molar ratio. In this work, we proposed "splitting-reconstruction" and "protection-release" strategies on the potential downstream circuit initiator derived from upstream EDC to guide the construction of EDC-involved cascade systems independent of system leakage derived from unpurified reactants. Both the reconstructed and released downstream circuit initiators were in compliance with the principle of the cascade AND logic gate. Using these two strategies, two cascade systemsâEDC2-4WJ-TMSDR and EDC3-HCRâwere developed to carry out the designed order, which did not require that the ratio of 1:1:1 be maintained. Furthermore, the inherent property of the upstream EDC could transfer into the downstream circuit, endowing the developed cascade systems with a more powerful signal amplification ability for the sensitive detection of the corresponding initiator strand. These two strategies may provide new insights into the process of constructing EDC-like circuit-involved high-order DNA networks.
Assuntos
DNA de Cadeia Simples , DNA , DNA/genética , DNA de Cadeia Simples/genética , Entropia , LógicaRESUMO
Background and aim: Insomnia is a subjective illness that has been identified as a risk factor for dementia. In this study, we investigated the association of acupuncture treatment for insomnia with the risk of dementia. We collected data from the National Health Insurance Research Database (NHIRD) of Taiwan to analyze the incidence of dementia in patients with insomnia who received acupuncture treatment. Experimental procedure: This retrospective matched-cohort study included 152,585 patients, selected from the NHIRD, who were newly diagnosed with insomnia between 2000 and 2010. The follow-up period ranged from the index date to the date of dementia diagnosis, date of withdrawal from the insurance program, or December 31, 2013. A 1:1 propensity score method was used to match an equal number of patients (N = 18,782) in the acupuncture and non-acupuncture cohorts. We employed Cox proportional hazards models to evaluate the risk of dementia. The cumulative incidence of dementia in both cohorts was estimated using the Kaplan-Meier method, and the difference between them was assessed through a log-rank test. Results and conclusion: Patients with insomnia who received acupuncture treatment were observed to have a lower risk of dementia (adjusted hazard ratio = 0.54, 95% confidence interval = 0.50-0.60) than those who did not undergo acupuncture treatment. The cumulative incidence of dementia was significantly lower in the acupuncture cohort than in the non-acupuncture cohort (log-rank test, p < 0.001). The results suggest that acupuncture treatment significantly reduced or slowed the development of dementia in patients with insomnia.
RESUMO
Amine catalysis is powerful for C-H bond functionalization of carbonyl compounds in chemical synthesis. For an α-C-H bond activation of ketone, directing groups are also required to guide the reaction selectivity. Represented herein is the first α-alkylation of cyclic ketones in the absence of amine catalyst and directing group.1H NMR, XPS, EPR studies and DFT calculation indicate that an α-carbon radical intermediate is formed through direct and selective activation of inert α-C-H bond of ketones chelating on the surface of colloidal quantum dots (QDs) catalyst, which is essential to weaken the C-H bond. As examplified, the activation platform using CdSe QDs as sole photocatalyst executes α-C-H alkylation of cyclic ketones with alkenes under visible light irradiation. Without amine catalyst and directing group, the high step- and atom-economy transformation under redox-neutral condition opens a new way for α-C-H functionalization of ketone in carbonyl chemistry.
RESUMO
BACKGROUND: Cold damage stress significantly affects rice growth (germination and seedling) and causes serious losses in yield in temperate and high-altitude areas around the globe. OBJECTIVE: This study aimed to explore the cold tolerance (CT) locus of rice and create new cold-tolerant germplasm. We constructed a chromosome segment substitution line (CSSL) with strong CT and fine mapped quantitative trait loci (QTLs) associated with CT by performing the whole-genome resequencing of CSSL with phenotypes under cold treatment. METHODS: A chromosome CSSL, including 271 lines from a cross between the cold-tolerant wild rice Y11 (Oryza rufipogon Griff.) and the cold-sensitive rice variety GH998, was developed to map QTLs conferring CT at the germination stage. The whole-genome resequencing was performed on CSSL for mapping QTLs of associated with CT at the germination stage. RESULTS: A high-density linkage map of the CSSLs was developed using the whole-genome resequencing of 1484 bins. The QTL analysis using 615,466 single-nucleotide polymorphisms (SNPs) led to the identification of 2 QTLs related to germination rate at low-temperature on chromosome 8 (qCTG-8) and chromosome 11 (qCTG-11). The qCTG-8 and qCTG-11 explained 14.55% and 14.31% of the total phenotypic variation, respectively. We narrowed down qCTG-8 and qCTG-11 to 195.5 and 78.83-kb regions, respectively. The expression patterns of important candidate genes in different tissues, and of RNA-sequencing (RNA-seq) in CSSLs, were identified based on gene sequences in qCTG-8 and qCTG-11 cold-induced expression analysis. LOC_Os08g01120 and LOC_Os08g01390 were identified as candidate genes in qCTG-8, and LOC_Os11g32880 was identified as a candidate gene in qCTG-11. CONCLUSIONS: This study demonstrated a general method that could be used to identify useful loci and genes in wild rice and aid in the future cloning of candidate genes of qCTG-8 and qCTG-11. The CSSLs with strong CT were supported for breeding cold-tolerant rice varieties.
RESUMO
All-optical ultrasound manipulates ultrasound waves based on laser and photonics technologies, providing an alternative approach for pulse-echo ultrasound imaging. However, its endoscopic imaging capability is limited ex vivo by the multifiber connection between the endoscopic probe and the console. Here, we report on all-optical ultrasound for in vivo endoscopic imaging using a rotational-scanning probe that relies on a small laser sensor to detect echo ultrasound waves. The acoustically induced lasing frequency change is measured via heterodyne detection by beating the two orthogonally polarized laser modes, enabling a stable output of ultrasonic responses and immunity to low-frequency thermal and mechanical disturbances. We miniaturize its optical driving and signal interrogation unit and synchronously rotate it with the imaging probe. This specialized design leaves a single-fiber connection to the proximal end and allows fast rotational scanning of the probe. As a result, we used a flexible, miniature all-optical ultrasound probe for in vivo rectal imaging with a B-scan rate of 1â Hz and a pullback range of â¼7â cm. This can visualize the gastrointestinal and extraluminal structures of a small animal. This imaging modality offers an imaging depth of 2â cm at a central frequency of â¼20â MHz, showing promise for high-frequency ultrasound imaging applications in gastroenterology and cardiology.
Assuntos
Diagnóstico por Imagem , Folhas de Planta , Animais , Ultrassonografia , Frequência CardíacaRESUMO
TET2 is a member of the ten-eleven translocation (Tet) family of DNA dioxygenases that regulate gene expression by promoting DNA demethylation (enzymatic activity) and partnering with chromatin regulatory complexes (nonenzymatic functions). TET2 is highly expressed in the hematopoietic lineage where its molecular functions are subject of continuous investigations due to the prevalence of TET2 mutations in hematologic malignancies. Previously, we have implicated Tet2 catalytic and noncatalytic functions in regulation of the myeloid and lymphoid lineages, respectively. However, the impact of these functions of Tet2 on hematopoiesis as the bone marrow ages remains unclear. Here, we conducted comparative transplantations and transcriptomic analyses of 3-, 6-, 9-, and 12-month-old Tet2 catalytic mutant (Mut) and knockout (KO) bone marrow. Tet2 Mut bone marrow of all ages exclusively caused hematopoietic disorders of the myeloid lineage. In contrast, young Tet2 KO bone marrow developed both lymphoid and myeloid diseases, while older Tet2 KO bone marrow predominantly elicited myeloid disorders with shorter latency than age-matched Tet2 Mut bone marrow. We identified robust gene dysregulation in Tet2 KO Lin- cells at 6 months that involved lymphoma and myelodysplastic syndrome and/or leukemia-causing genes, many of which were hypermethylated early in life. There was a shift from lymphoid to myeloid gene deregulation in Tet2 KO Lin- cells with age, underpinning the higher incidence of myeloid diseases. These findings expand on the dynamic regulation of bone marrow by Tet2 and show that its catalytic dependent and independent roles have distinct impacts on myeloid and lymphoid lineages with age.
RESUMO
INTRODUCTION: Oxaliplatin is a third-generation platinum-based antineoplastic drug that is widely used to treat patients with colorectal cancer. Reported adverse reactions include hepatic sinusoidal obstruction syndrome and liver fibrosis, but there are few reports of cirrhosis associated with chemotherapy. In addition, the pathogenesis of cirrhosis remains unclear. CASE REPORT: We report a case of suspected oxaliplatin-induced liver cirrhosis, an adverse reaction that has not been previously reported. MANAGEMENT AND OUTCOME: A 50-year-old Chinese man was diagnosed with rectal cancer and underwent laparoscopic radical rectal cancer surgery. The patient had a history of schistosomiasis, but history and serology showed no evidence of chronic liver disease. However, after five oxaliplatin-based chemotherapy cycles, the patient presented dramatic changes in liver morphology and developed splenomegaly, massive ascites, and elevated CA125 levels. Four months after discontinuing oxaliplatin, the patient's ascites had decreased significantly and CA125 levels declined from 505.3 to 124.6â mU/mL. After 15 weeks of follow-up, CA125 levels decreased to the normal range, and there has been no increase in ascites in this patient. DISCUSSION: Oxaliplatin-induced cirrhosis may be a serious complication and should be discontinued based on clinical evidence.
RESUMO
BACKGROUND: Tumor endothelial cells (TECs) play a significant role in regulating the tumor microenvironment, drug response, and immune cell activities in various cancers. However, the association between TEC gene expression signature and patient prognosis or therapeutic response remains poorly understood. METHODS: We analyzed transcriptomics data of normal and tumor endothelial cells obtained from the GEO database to identify differentially expressed genes (DEGs) associated with TECs. We then compared these DEGs with those commonly found across five different tumor types from the TCGA database to determine their prognostic relevance. Using these genes, we constructed a prognostic risk model integrated with clinical features to develop a nomogram model, which we validated through biological experiments. RESULTS: We identified 12 TEC-related prognostic genes across multiple tumor types, of which five genes were sufficient to construct a prognostic risk model with an AUC of 0.682. The risk scores effectively predicted patient prognosis and immunotherapeutic response. Our newly developed nomogram model provided more accurate prognostic estimates of cancer patients than the TNM staging method (AUC = 0.735) and was validated using external patient cohorts. Finally, RT-PCR and immunohistochemical analyses indicated that the expression of these 5 TEC-related prognostic genes was up-regulated in both patient-derived tumors and cancer cell lines, while depletion of the hub genes reduced cancer cell growth, migration and invasion, and enhanced their sensitivity to gemcitabine or cytarabine. CONCLUSIONS: Our study discovered the first TEC-related gene expression signature that can be used to construct a prognostic risk model for guiding treatment options in multiple cancers.
RESUMO
Rheumatoid arthritis (RA) is a chronic autoimmune disease of unexplained causes. Its pathological features include synovial tissue hyperplasia, inflammatory cell infiltration in joint cavity fluid, cartilage bone destruction, and joint deformation. C-C motif chemokine ligand 3 (CCL3) belongs to inflammatory cell chemokine. It is highly expressed in inflammatory immune cells. Increasingly, studies have shown that CCL3 can promote the migration of inflammatory factors to synovial tissue, the destruction of bone and joint, angiogenesis, and participate in the pathogenesis of RA. These symptoms indicate that the expression of CCL3 is highly correlated with RA disease. Therefore, this paper reviews the possible mechanism of CCL3 in the pathogenesis of RA, which may provide some new insights for the diagnosis and treatment of RA.
RESUMO
Sunlight concentration has been demonstrated as one promising strategy for practically photoelectrochemical (PEC) water splitting with exceeding 10% solar-to-hydrogen efficiency. However, the operating temperature of PEC devices, including the electrolyte and photoelectrodes, can be elevated to 65 â naturally due to the concentrated sunlight and the thermal effect of near-infrared light. In this work, high temperature photoelectrocatalysis is evaluated using titanium dioxide (TiO2) photoanode as a model system, which is believed to be one of the most stable semiconductors. During the studied temperature range of 25-65 â, a linear increment of photocurrent density with a positive coefficient of 5.02 µA cm-2 K-1 can be observed. The onset potential for water electrolysis shows a significant negative shift by 200 mV. An amorphous titanium hydroxide layer and a number of oxygen vacancies generate on the surface of TiO2 nanorods, promoting the water oxidation kinetics. During long-term stability testing, the NaOH electrolyte degradation and TiO2 photocorrosion at high temperatures could cause the decaying photocurrent. This work evaluates the high temperature photoelectrocatalysis of TiO2 photoanode and reveals the mechanism of temperature effects on TiO2 model photoanode.
RESUMO
BACKGROUND: Pathologic complete response (pCR) following preoperative systemic therapy is associated with improved outcomes after subsequent liver transplant/resection in hepatocellular carcinoma (HCC). However, the relationship between radiographic and histopathological response remains unclear. METHODS: We retrospectively examined patients with initially unresectable HCC who received tyrosine kinase inhibitor (TKI) plus anti-programmed death 1 (PD-1) therapy before undergoing liver resection between March 2019 and September 2021 across 7 hospitals in China. Radiographic response was evaluated using mRECIST. A pCR was defined as no viable tumor cells in resected samples. RESULTS: We included 35 eligible patients, of whom 15 (42.9%) achieved pCR after systemic therapy. After a median follow-up of 13.2 months, tumors recurred in 8 non-pCR and 1 pCR patient. Before resection, there were 6 complete responses, 24 partial responses, 4 stable disease cases, and 1 progressive disease case, per mRECIST. Predicting pCR by radiographic response yielded an area under the receiver operating characteristic curve (AUC) of 0.727 (95% CI: 0.558-0.902), with an optimal cutoff value of 80% reduction in the enhanced area in MRI (called major radiographic response), which had a 66.7% sensitivity, 85.0% specificity, and a 77.1% diagnostic accuracy. When radiographic response was combined with α-fetoprotein response, the AUC was 0.926 (95% CI: 0.785-0.999); the optimal cutoff value was 0.446, which had a 91.7% sensitivity, 84.6%, specificity, and an 88.0% diagnostic accuracy. CONCLUSIONS: In patients with unresectable HCC receiving combined TKI/anti-PD 1 therapy, major radiographic response alone or combined with α-fetoprotein response may predict pCR.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/tratamento farmacológico , alfa-Fetoproteínas , Estudos Retrospectivos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Recidiva Local de Neoplasia/diagnóstico por imagem , Imunoterapia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
KEYNOTE-033 (NCT02864394) was a multicountry, open-label, phase 3 study that compared pembrolizumab vs docetaxel in previously treated, programmed death-ligand 1 (PD-L1)-positive, advanced non-small cell lung cancer (NSCLC), with most patients enrolled in mainland China. Eligible patients were randomized (1:1) to pembrolizumab 2 mg/kg or docetaxel 75 mg/m2 every 3 weeks. Primary endpoints were overall survival (OS) and progression-free survival and were evaluated sequentially using stratified log-rank tests, first in patients with PD-L1 tumor proportion score (TPS) ≥50% and then in patients with PD-L1 TPS ≥1% (significance threshold: P < .025, one-sided). A total of 425 patients were randomized to pembrolizumab (N = 213) or docetaxel (N = 212) between 8 September 2016 and 17 October 2018. In patients with a PD-L1 TPS ≥50% (n = 227), median OS was 12.3 months with pembrolizumab and 10.9 months with docetaxel; the hazard ratio (HR) was 0.83 (95% confidence interval [CI]: 0.61-1.14; P = .1276). Because the significance threshold was not met, sequential testing of OS and PFS was ceased. In patients with a PD-L1 TPS ≥1%, the HR for OS for pembrolizumab vs docetaxel was 0.75 (95% CI: 0.60-0.95). In patients from mainland China (n = 311) with a PD-L1 TPS ≥1%, HR for OS was 0.68 (95% CI: 0.51-0.89). Incidence of grade 3 to 5 treatment-related AEs was 11.3% with pembrolizumab vs 47.5% with docetaxel. In summary, pembrolizumab improved OS vs docetaxel in previously treated, PD-L1-positive NSCLC without unexpected safety signals; although the statistical significance threshold was not reached, the numerical improvement is consistent with that previously observed for pembrolizumab in previously treated, advanced NSCLC.
RESUMO
The recovery of volatile fatty acids (VFAs) through anaerobic fermentation (AF) is usually restricted by the poor biodegradability of waste activated sludge (WAS). This study proposed a novel strategy, i.e. peroxymonosulfate (PMS) activated by Fe-loaded sodium alginate hydrogel beads (Fe-SA), to enhance AF performance. Experimental results demonstrated that the as-synthesized Fe-SA and PMS co-pretreatment synergistically enhanced WAS solubilization and VFAs production. The maximal VFAs yield of 2013 mg COD/L was achieved at the Fe-SA dosage of 4.0 mM/g TSS, which was 93.7% higher than that with sole PMS addition and 8.82 times higher than that of the control. Mechanistic studies elucidated that the generation of reactive radicals such as SO4â¢- and â¢OH from PMS was greatly induced by Fe-SA, which contributed to WAS disintegration and degradation of refractory compounds. Additionally, analysis of the key enzyme activities indicated that the Fe-SA could strengthen biological hydrolysis and acidogenesis of sludge during AF. Microbial analysis illustrated that Fe-SA evidently improved the abundances of fermentative microorganisms as well as functional gene expression via creating a favorable environment for microbial growth. This study demonstrated the applicable potential of Fe-SA hydrogel beads activating PMS for VFAs production and provides an important reference for developing advanced oxidation processes-based application in AF.
RESUMO
SPX-domain proteins (small proteins with only the SPX domain) have been proven to be involved in phosphate-related signal transduction and regulation pathways. Except for OsSPX1 research showing that it plays a role in the process of rice adaptation to cold stress, the potential functions of other SPX genes in cold stress are unknown. Therefore, in this study, we identified six OsSPXs from the whole genome of DXWR. The phylogeny of OsSPXs has a strong correlation with its motif. Transcriptome data analysis showed that OsSPXs were highly sensitive to cold stress, and real-time PCR verified that the levels of OsSPX1, OsSPX2, OsSPX4, and OsSPX6 in cold-tolerant materials (DXWR) during cold treatment were higher than that of cold-sensitive rice (GZX49). The promoter region of DXWR OsSPXs contains a large number of cis-acting elements related to abiotic stress tolerance and plant hormone response. At the same time, these genes have expression patterns that are highly similar to cold-tolerance genes. This study provides useful information about OsSPXs, which is helpful for the gene-function research of DXWR and genetic improvements during breeding.
Assuntos
Oryza , Oryza/fisiologia , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Temperatura BaixaRESUMO
Vitrification and ultrarapid laser warming are crucial for the cryopreservation of animal embryos, oocytes, and other cells of medicinal, genetic, and agricultural value. In the present study, we focused on alignment and bonding techniques for a special cryojig that combines a jig tool and jig holder into one piece. This novel cryojig was used to obtain a high laser accuracy of 95% and a successful rewarming rate of 62%. The experimental results indicated that our refined device improved laser accuracy in the warming process after long-term cryo-storage through vitrification. We anticipate that our findings will lead to cryobanking applications that use vitrification and laser nanowarming to preserve cells and tissues from a wide range of species.
RESUMO
In this era of rapid information exchange in public networks, there is a risk to information security. Data hiding is an important technique for privacy protection. Image interpolation is an important data-hiding technique in image processing. This study proposed a method called neighbor mean interpolation by neighboring pixels (NMINP) that calculates a cover image pixel by neighbor mean interpolation and neighboring pixels. To reduce image distortion, NMINP limits the number of bits when embedding secret data, making NMINP have a higher hiding capacity and peak signal-to-noise ratio (PSNR) than other methods. Furthermore, in some cases, the secret data are flipped, and the flipped data are treated in ones' complement format. A location map is not needed in the proposed method. Experimental results comparing NMINP with other state-of-the-art methods show that NMINP improves the hiding capacity by more than 20% and PSNR by 8%.