Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Adv Mater ; 33(39): e2103000, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34397123


The competing and non-equilibrium phase transitions, involving dynamic tunability of cooperative electronic and magnetic states in strongly correlated materials, show great promise in quantum sensing and information technology. To date, the stabilization of transient states is still in the preliminary stage, particularly with respect to molecular electronic solids. Here, a dynamic and cooperative phase in potassium-7,7,8,8-tetracyanoquinodimethane (K-TCNQ) with the control of pulsed electromagnetic excitation is demonstrated. Simultaneous dynamic and coherent lattice perturbation with 8 ns pulsed laser (532 nm, 15 MW cm-2 , 10 Hz) in such a molecular electronic crystal initiates a stable long-lived (over 400 days) conducting paramagnetic state (≈42 Ωcm), showing the charge-spin bistability over a broad temperature range from 2 to 360 K. Comprehensive noise spectroscopy, in situ high-pressure measurements, electron spin resonance (ESR), theoretical model, and scanning tunneling microscopy/spectroscopy (STM/STS) studies provide further evidence that such a transition is cooperative, requiring a dedicated charge-spin-lattice decoupling to activate and subsequently stabilize nonequilibrium phase. The cooperativity triggered by ultrahigh-strain-rate (above 106 s- 1 ) pulsed excitation offers a collective control toward the generation and stabilization of strongly correlated electronic and magnetic orders in molecular electronic solids and offers unique electro-magnetic phases with technological promises.

Nat Mater ; 20(3): 329-334, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33462464


Dissipationless currents from topologically protected states are promising for disorder-tolerant electronics and quantum computation. Here, we photogenerate giant anisotropic terahertz nonlinear currents with vanishing scattering, driven by laser-induced coherent phonons of broken inversion symmetry in a centrosymmetric Dirac material ZrTe5. Our work suggests that this phononic terahertz symmetry switching leads to formation of Weyl points, whose chirality manifests in a transverse, helicity-dependent current, orthogonal to the dynamical inversion symmetry breaking axis, via circular photogalvanic effect. The temperature-dependent topological photocurrent exhibits several distinct features: Berry curvature dominance, particle-hole reversal near conical points and chirality protection that is responsible for an exceptional ballistic transport length of ~10 µm. These results, together with first-principles modelling, indicate two pairs of Weyl points dynamically created by B1u phonons of broken inversion symmetry. Such phononic terahertz control breaks ground for coherent manipulation of Weyl nodes and robust quantum transport without application of static electric or magnetic fields.

Phys Rev E ; 93(3): 032152, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078337


We calculate the efficiency at the unified trade-off optimization criterion (the so-called maximum Ω criterion) representing a compromise between the useful energy and the lost energy of heat engines operating between two reservoirs at different temperatures and chemical potentials, and demonstrate that the linear coefficient 3/4 and quadratic coefficient 1/32 of the efficiency at maximum Ω are universal for heat engines under strong coupling and symmetry conditions. It is further proved that the conclusions obtained here also apply to the ecological optimization criterion.