Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 9610, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953260

RESUMO

We demonstrated the design of pre-additive manufacturing microalloying elements in tuning the microstructure of iron (Fe)-based alloys for their tunable mechanical properties. We tailored the microalloying stoichiometry of the feedstock to control the grain sizes of the metallic alloy systems. Two specific microalloying stoichiometries were reported, namely biodegradable iron powder with 99.5% purity (BDFe) and that with 98.5% (BDFe-Mo). Compared with the BDFe, the BDFe-Mo powder was found to have lower coefficient of thermal expansion (CTE) value and better oxidation resistance during consecutive heating and cooling cycles. The selective laser melting (SLM)-built BDFe-Mo exhibited high ultimate tensile strength (UTS) of 1200 MPa and fair elongation of 13.5%, while the SLM-built BDFe alloy revealed a much lower UTS of 495 MPa and a relatively better elongation of 17.5%, indicating the strength enhancement compared with the other biodegradable systems. Such an enhanced mechanical behavior in the BDFe-Mo was assigned to the dominant mechanism of ferrite grain refinement coupled with precipitate strengthening. Our findings suggest the tunability of outstanding strength-ductility combination by tailoring the pre-additive manufacturing microalloying elements with their proper concentrations.

2.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924977

RESUMO

The coaxial core/shell composite electrospun nanofibers consisting of relaxor ferroelectric P(VDF-TrFE-CTFE) and ferroelectric P(VDF-TrFE) polymers are successfully tailored towards superior structural, mechanical, and electrical properties over the individual polymers. The core/shell-TrFE/CTFE membrane discloses a more prominent mechanical anisotropy between the revolving direction (RD) and cross direction (CD) associated with a higher tensile modulus of 26.9 MPa and good strength-ductility balance, beneficial from a better degree of nanofiber alignment, the increased density, and C-F bonding. The interfacial coupling between the terpolymer P(VDF-TrFE-CTFE) and copolymer P(VDF-TrFE) is responsible for comparable full-frequency dielectric responses between the core/shell-TrFE/CTFE and pristine terpolymer. Moreover, an impressive piezoelectric coefficient up to 50.5 pm/V is achieved in the core/shell-TrFE/CTFE composite structure. Our findings corroborate the promising approach of coaxial electrospinning in efficiently tuning mechanical and electrical performances of the electrospun core/shell composite nanofiber membranes-based electroactive polymers (EAPs) actuators as artificial muscle implants.


Assuntos
Clorofluorcarbonetos/química , Hidrocarbonetos Fluorados/química , Nanofibras/química , Compostos de Vinila/química , Fenômenos Eletromagnéticos
3.
J Alloys Compd ; 857: 157555, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33071463

RESUMO

In-situ thermal cycling neutron diffraction experiments were employed to unravel the effect of thermal history on the evolution of phase stability and internal stresses during the additive manufacturing (AM) process. While the fully-reversible martensite-austenite phase transformation was observed in the earlier thermal cycles where heating temperatures were higher than Af, the subsequent damped thermal cycles exhibited irreversible phase transformation forming reverted austenite. With increasing number of thermal cycles, the thermal stability of the retained austenite increased, which decreased the coefficient of thermal expansion. However, martensite revealed higher compressive residual stresses and lower dislocation density, indicating inhomogeneous distributions of the residual stresses and microstructures on the inside and on the surface of the AM component. The compressive residual stresses that acted on the martensite resulted preferentially from transformation strain and additionally from thermal misfit strain, and the decrease in the dislocation density might have been due to the strong recovery effect near the Ac1 temperature.

4.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050160

RESUMO

In this study, we optimized the geometry and composition of additive-manufactured pedicle screws. Metal powders of titanium-aluminum-vanadium (Ti-6Al-4V) were mixed with reactive glass-ceramic biomaterials of bioactive glass (BG) powders. To optimize the geometry of pedicle screws, we applied a novel numerical approach to proposing the optimal shape of the healing chamber to promote biological healing. We examined the geometry and composition effects of pedicle screw implants on the interfacial autologous bone attachment and bone graft incorporation through in vivo studies. The addition of an optimal amount of BG to Ti-6Al-4V leads to a lower elastic modulus of the ceramic-metal composite material, effectively reducing the stress-shielding effects. Pedicle screw implants with optimal shape design and made of the composite material of Ti-6Al-4V doped with BG fabricated through additive manufacturing exhibit greater osseointegration and a more rapid bone volume fraction during the fracture healing process 120 days after implantation, per in vivo studies.


Assuntos
Alumínio , Desenvolvimento Ósseo , Vidro , Parafusos Pediculares , Pós , Próteses e Implantes , Titânio , Vanádio , Animais , Fenômenos Biomecânicos , Remodelação Óssea , Processamento de Imagem Assistida por Computador , Osseointegração , Estresse Mecânico , Suínos , Tomografia Computadorizada por Raios X
5.
Addit Manuf ; 35: 101322, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32835025

RESUMO

The deformations of isotropic and anisotropic Ti-6Al-4V columnar structures fabricated by additive manufacturing were extensively examined. The distinct texture and microstructure distributions were characterised. In situ X-ray diffraction measurements show different lattice activities resulting from the different microstructure distributions. Spatially resolved mapping revealed manufacturing-induced crystallite-orientation distributions that determine the deformation mechanisms. We propose a self-consistent model to correlate the multi-scale characteristics, from the anisotropic-texture-distribution microstructure to the bulk mechanical properties. We determined that basal and pyramidal slip activities were activated by tension deformation. The underlying additive-manufacturing-induced crystal plasticity plays a major role. We find that the texture development of the columnar structures and the distribution of crystallite orientation achieved by different processing conditions during additive manufacturing have important effects on the mechanical properties. The dominant deformation mode for the anisotropic Ti-6Al-4V columnar structure is basal slip, and that for the isotropic Ti-6Al-4V columnar structure is pyramidal slip. The difference may be important for determining the fatigue behaviour.

6.
BMC Evol Biol ; 20(1): 46, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32316913

RESUMO

BACKGROUND: Tooth morphology within theropod dinosaurs has been extensively investigated and shows high disparity throughout the Cretaceous. Changes or diversification in feeding ecology, i.e., adoption of an herbivorous diet (e.g., granivorous), is proposed as a major driver of tooth evolution in Paraves (e.g., Microraptor, troodontids and avialans). Here, we studied the microscopic features of paravian non-avian theropod and avialan teeth using high-spatial-resolution synchrotron transmission X-ray microscopy and scanning electron microscopy. RESULTS: We show that avialan teeth are characterized by the presence of simple enamel structures and a lack of porous mantle dentin between the enamel and orthodentin. Reduced internal structures of teeth took place independently in Early Cretaceous birds and a Microraptor specimen, implying that shifts in diet in avialans from that of closely related dinosaurs may correlate with a shift in feeding ecology during the transition from non-avian dinosaurs to birds. CONCLUSION: Different lines of evidence all suggest a large reduction in biting force affecting the evolution of teeth in the dinosaur-bird transition. Changes in teeth microstructure and associated dietary shift may have contributed to the early evolutionary success of stemward birds in the shadow of other non-avian theropods.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Dieta , Dinossauros/anatomia & histologia , Dente/ultraestrutura , Animais , Aves/fisiologia , Dinossauros/fisiologia , Fósseis , Herbivoria , Filogenia
7.
Sci Rep ; 9(1): 14788, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616021

RESUMO

We applied Simmons-Balluffi methods, positron measurements, and neutron diffraction to estimate the vacancy of CoCrFeNi and CoCrFeMnNi high-entropy alloys (HEAs) using Cu as a benchmark. The corresponding formation enthalpies and associated entropies of the HEAs and Cu were calculated. The vacancy-dependent effective free volumes in both CoCrFeNi and CoCrFeMnNi alloys are greater than those in Cu, implying the easier formation of vacancies by lattice structure relaxation of HEAs at elevated temperatures. Spatially resolved synchrotron X-ray measurements revealed different characteristics of CoCrFeNi and CoCrFeMnNi HEAs subjected to quasi-equilibrium conditions at high temperatures. Element-dependent behavior revealed by X-ray fluorescence (XRF) mapping indicates the effect of Mn on the Cantor Alloy.

8.
Am J Transl Res ; 11(4): 2304-2316, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105837

RESUMO

This study inspected whether calcitriol could exert a mineralization-inductive effect comparable to that of vitamin C in cultured human periodontium cells (hPDCs). The mRNA expression of the mineralization-related biomarkers core-binding factor subunit alpha-1 (Cbfa1), collagen 1 α1 (Col-I), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), osteocalcin (OCN), vitamin D receptor (VDR), cementum protein 1 (CEMP-1), cementum attachment protein (CAP), interleukin 6 (IL-6), transforming growth factor-ß1 (TGF-ß1) and osteoprotegerin (OPG) was surveyed after incubation of hPDCs with vitamin C and calcitriol for 2 weeks. Translational expression information from ALP activity and CEMP-1 and CAP immunofluorescence assays was acquired from hPDCs at the second and third weeks. Extracellular calcifications were confirmed by von Kossa staining, Alizarin Red staining and synchrotron transmission X-ray microscopy (TXM) at the fourth and fifth weeks. It was found that both vitamin C and calcitriol not only increased mineralization-related mRNA fold-changes but also enhanced ALP activity, CEMP-1 immunofluorescence, von Kossa and Alizarin Red staining and TXM-associated calcifications. Generally, 10-8 M calcitriol displayed greater mineralization significance than 10-7 M calcitriol in the assays tested. However, vitamin C stimulated lower Cbfa1, Col-1, ALP, OPN, BSP, OCN, VDR, CEMP-1 and IL-6 mRNA fold-changes than 10-8 M calcitriol. Finally, TXM analysis indicated that a 10-8 M calcitriol treatment stimulated greater calcifications than vitamin C treatment. Therefore, the analytical results confirmed the osteo-inductive potential of vitamin C in cultured hPDCs. In contrast, 10-8 M calcitriol could potentially function as a substitute because it stimulates a greater mineralization effect than vitamin C or 10-7 M calcitriol.

9.
Materials (Basel) ; 12(6)2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30934617

RESUMO

In this study, we demonstrate the fabrication of Y-doped bioactive glass (BG), which is proposed as a potential material for selective internal radiotherapy applications. Owing to its superior bioactivity and biodegradability, it overcomes the problem of yttrium aluminosilicate spheres that remain in the host body for a long duration after treatment. The preparation of Y-doped BG powders were carried out using a spray pyrolysis method. By using two different yttrium sources, we examine the change of the local distribution of yttrium concentration. In addition, characterizations of phase information, particle morphologies, surface areas, and bioactivity were also performed. The results show that both Y-doped BG powders are bioactive and the local Y distribution can be controlled.

10.
J Appl Crystallogr ; 51(Pt 3): 831-843, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29896061

RESUMO

Separation of size and strain effects on diffraction line profiles has been studied in a round robin involving laboratory instruments and synchrotron radiation beamlines operating with different radiation, optics, detectors and experimental configurations. The studied sample, an extensively ball milled iron alloy powder, provides an ideal test case, as domain size broadening and strain broadening are of comparable size. The high energy available at some synchrotron radiation beamlines provides the best conditions for an accurate analysis of the line profiles, as the size-strain separation clearly benefits from a large number of Bragg peaks in the pattern; high counts, reliable intensity values in low-absorption conditions, smooth background and data collection at different temperatures also support the possibility to include diffuse scattering in the analysis, for the most reliable assessment of the line broadening effect. However, results of the round robin show that good quality information on domain size distribution and microstrain can also be obtained using standard laboratory equipment, even when patterns include relatively few Bragg peaks, provided that the data are of good quality in terms of high counts and low and smooth background.

11.
Adv Mater ; 27(47): 7728-33, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26480289

RESUMO

In situ synchrotron X-ray diffraction is used to investigate a three-way piezo-phototronic soft material. This new system is composed of a semi-crystalline poly(vinylidene fluoride-co-trifluoroethylene) piezoelectric polymer and titanium oxide nanoparticles. Under light illumination, photon-induced piezoelectric responses are nearly two times higher at both the lattice-structure and the macroscopic level than under conditions without light illumination. A mechanistic model is proposed.

12.
Langmuir ; 30(38): 11421-7, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25168862

RESUMO

The structures of C- and N-terminally monoPEGylated human parathyroid hormone fragment hPTH(1-34) as well as their unmodified counterparts, poly(ethylene glycol) (PEG) and hPTH(1-34), have been studied by small-angle neutron scattering (SANS). The scattering results show that free hPTH(1-34) in 100 mM phosphate buffer (pH 7.4) aggregates into clusters. After conjugation with PEG, the PEG-peptide conjugates self-assemble into a supramolecular core-shell structure with a cylindrical shape. The PEG chains form a shell around the hPTH(1-34) core to shield hPTH(1-34) from the solvent. The detailed structural information on the self-assembled structures is extracted from SANS using a model of the cylindrical core with a shell of Gaussian chains attached to the core surface. On the basis of the data, because of the charge-dipole interactions between the conjugated PEG chain and the peptide, the conjugated PEG chain forms a more collapsed conformation compared to free PEG. Moreover, the size of the self-assembled structures formed by the C-terminally monoPEGylated hPTH(1-34) is about 3 times larger than that of the N-terminally monoPEGylated hPTH(1-34). The different aggregation numbers of the self-assembled structures, triggered by different PEGylation sites, are reported. These size discrepancies because of different PEGylation sites could potentially affect the pharmacokinetics of the hPTH(1-34) drug.


Assuntos
Polietilenoglicóis/química , Teriparatida/química , Humanos , Estrutura Molecular
13.
Sci Rep ; 4: 4394, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24637714

RESUMO

In-situ synchrotron x-ray experiments have been used to follow the evolution of the diffraction peaks for crystalline dendrites embedded in a bulk metallic glass matrix subjected to a compressive loading-unloading cycle. We observe irreversible diffraction-peak splitting even though the load does not go beyond half of the bulk yield strength. The chemical analysis coupled with the transmission electron microscopy mapping suggests that the observed peak splitting originates from the chemical heterogeneity between the core (major peak) and the stiffer shell (minor peak) of the dendrites. A molecular dynamics model has been developed to compare the hkl-dependent microyielding of the bulk metallic-glass matrix composite. The complementary diffraction measurements and the simulation results suggest that the interface, as Maxwell damper, between the amorphous matrix and the (211) crystalline planes relax under prolonged load that causes a delay in the reload curve which ultimately catches up with the original path.

14.
Langmuir ; 29(13): 4259-65, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23330911

RESUMO

Polyethylene glycol (PEG) at various molecular weights (MWs) has been regarded as a wonder molecule in biomedical applications. For instance, PEG serves as a unique moiety for pegylation of "biobetter" drug development, PEG provides controlled-release and preserved activity of biologics, and PEG modified surface works as an antibiofouling surface. The primary characteristics of PEG molecules used in relevant applications have been attributed mainly to the hydration behavior in aqueous solutions. However, the effects on the solvation of solutes in solution caused by presenting PEG molecules as a cosolvent, as well as the thermodynamics aspect of the hydration behavior of PEG in solution, have not been well documented. The solvation behavior of solutes, such as protein, with PEG as a cosolvent, indicates the success of PEG applications, such as biofouling and controlled release. In this investigation, we examined the effects of a buffer solution containing PEG molecules on the solution behavior of solute and the interactions between solid surfaces with solutes. We adapted the study by selecting a lysozyme as a solute in a buffer solution with either ammonium sulfate (kosmotrope) or sodium chloride (chaotrope) and anionic resin (SP-Sepharose) as solid surfaces. The experiments primarily involved binding equilibrium measurements and thermodynamics analysis. The results revealed that, in both saline buffers, adding PEG increases the binding affinity between the lysozyme and the resin, similar to kosmotropic salt in the examined salt concentrations. The thermodynamics analyses involving microcalorimetric measurements show that the bindings are mainly driven by enthalpy, indicating that electrostatic interaction was the primary binding force under these experimental conditions. The variations of the enthalpy and entropy of the binding thermodynamics when adding PEG to different salt types in the buffer solution showed opposite behavior, and the results support the concept of kosmotrope-like behavior of PEG. The equilibrium and thermodynamics data demonstrate that PEG has a kosmotrope-like hydration behavior, and the extent of kosmotrope-like behavior depends on the molecular weight of PEG with the outcomes of various molecular weights of PEG being added to the binding solution. The results of this study provide essential knowledge for PEG as an additive (or cosolvent) in various research applications.


Assuntos
Polietilenoglicóis/química , Termodinâmica , Calorimetria , Muramidase/química , Muramidase/metabolismo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...