Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(15): e2119429119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377791

RESUMO

Charge density waves (CDWs) have been observed in nearly all families of copper-oxide superconductors. But the behavior of these phases across different families has been perplexing. In La-based cuprates, the CDW wavevector is an increasing function of doping, exhibiting the so-called Yamada behavior, while in Y- and Bi-based materials the behavior is the opposite. Here, we report a combined resonant soft X-ray scattering (RSXS) and neutron scattering study of charge and spin density waves in isotopically enriched La1.8−xEu0.2SrxCuO4 over a range of doping 0.07≤x≤0.20. We find that the CDW amplitude is temperature independent and develops well above experimentally accessible temperatures. Further, the CDW wavevector shows a nonmonotonic temperature dependence, exhibiting Yamada behavior at low temperature with a sudden change occurring near the spin ordering temperature. We describe these observations using a Landau­Ginzburg theory for an incommensurate CDW in a metallic system with a finite charge compressibility and spin-CDW coupling. Extrapolating to high temperature, where the CDW amplitude is small and spin order is absent, our analysis predicts a decreasing wavevector with doping, similar to Y and Bi cuprates. Our study suggests that CDW order in all families of cuprates forms by a common mechanism.

2.
Phys Rev Lett ; 124(7): 077601, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142325

RESUMO

The bilayer Hubbard model with electron-hole doping is an ideal platform to study excitonic orders due to suppressed recombination via spatial separation of electrons and holes. However, suffering from the sign problem, previous quantum Monte Carlo studies could not arrive at an unequivocal conclusion regarding the presence of phases with clear signatures of excitonic condensation in bilayer Hubbard models. Here, we develop a determinant quantum Monte Carlo algorithm for the bilayer Hubbard model that is sign-problem-free for equal and opposite doping in the two layers and study excitonic order and charge and spin density modulations as a function of chemical potential difference between the two layers, on-site Coulomb repulsion, and interlayer interaction. In the intermediate coupling regime and in proximity to the SU(4)-symmetric point, we find a biexcitonic condensate phase at finite electron-hole doping, as well as a competing (π,π) charge density wave state. We extract the Berezinskii-Kosterlitz-Thouless transition temperature from superfluid density and a finite-size scaling analysis of the correlation functions and explain our results in terms of an effective biexcitonic hard-core boson model.

3.
Science ; 366(6468): 987-990, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31753997

RESUMO

Strange or bad metallic transport, defined by incompatibility with the conventional quasiparticle picture, is a theme common to many strongly correlated materials, including high-temperature superconductors. The Hubbard model represents a minimal starting point for modeling strongly correlated systems. Here we demonstrate strange metallic transport in the doped two-dimensional Hubbard model using determinantal quantum Monte Carlo calculations. Over a wide range of doping, we observe resistivities exceeding the Mott-Ioffe-Regel limit with linear temperature dependence. The temperatures of our calculations extend to as low as 1/40 of the noninteracting bandwidth, placing our findings in the degenerate regime relevant to experimental observations of strange metallicity. Our results provide a foundation for connecting theories of strange metals to models of strongly correlated materials.

4.
Proc Natl Acad Sci U S A ; 116(9): 3449-3453, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808739

RESUMO

Fermi surface (FS) topology is a fundamental property of metals and superconductors. In electron-doped cuprate Nd2-x Ce x CuO4 (NCCO), an unexpected FS reconstruction has been observed in optimal- and overdoped regime (x = 0.15-0.17) by quantum oscillation measurements (QOM). This is all the more puzzling because neutron scattering suggests that the antiferromagnetic (AFM) long-range order, which is believed to reconstruct the FS, vanishes before x = 0.14. To reconcile the conflict, a widely discussed external magnetic-field-induced AFM long-range order in QOM explains the FS reconstruction as an extrinsic property. Here, we report angle-resolved photoemission (ARPES) evidence of FS reconstruction in optimal- and overdoped NCCO. The observed FSs are in quantitative agreement with QOM, suggesting an intrinsic FS reconstruction without field. This reconstructed FS, despite its importance as a basis to understand electron-doped cuprates, cannot be explained under the traditional scheme. Furthermore, the energy gap of the reconstruction decreases rapidly near x = 0.17 like an order parameter, echoing the quantum critical doping in transport. The totality of the data points to a mysterious order between x = 0.14 and 0.17, whose appearance favors the FS reconstruction and disappearance defines the quantum critical doping. A recent topological proposal provides an ansatz for its origin.

5.
Phys Rev Lett ; 120(24): 246401, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29956982

RESUMO

Understanding spin excitations and their connection to unconventional superconductivity have remained central issues since the discovery of cuprates. Direct measurement of the dynamical spin structure factor in the parent compounds can provide key information on important interactions relevant in the doped regime, and variations in the magnon dispersion have been linked closely to differences in crystal structure between families of cuprate compounds. Here, we elucidate the relationship between spin excitations and various controlling factors thought to be significant in high-T_{c} materials by systematically evaluating the dynamical spin structure factor for the three-orbital Hubbard model, revealing differences in the spin dispersion along the Brillouin zone axis and the diagonal. Generally, we find that the absolute energy scale and momentum dependence of the excitations primarily are sensitive to the effective charge-transfer energy, while changes in the on-site Coulomb interactions have little effect on the details of the dispersion. In particular, our result highlights the splitting between spin excitations along the axial and diagonal directions in the Brillouin zone. This splitting decreases with increasing charge-transfer energy and correlates with changes in the apical oxygen position, and general structural variations, for different cuprate families.

6.
Science ; 358(6367): 1161-1164, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191902

RESUMO

Upon doping, Mott insulators often exhibit symmetry breaking where charge carriers and their spins organize into patterns known as stripes. For high-transition temperature cuprate superconductors, stripes are widely suspected to exist in a fluctuating form. We used numerically exact determinant quantum Monte Carlo calculations to demonstrate dynamical stripe correlations in the three-band Hubbard model, which represents the local electronic structure of the copper-oxygen plane. Our results, which are robust to varying parameters, cluster size, and boundary conditions, support the interpretation of experimental observations such as the hourglass magnetic dispersion and the Yamada plot of incommensurability versus doping in terms of the physics of fluctuating stripes. These findings provide a different perspective on the intertwined orders emerging from the cuprates' normal state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...